
MA TH CHA PT ER H 
Matrix Eigenvalue Problems 

The Schrodinger equation 

(H.1) 

is an eigenvalue problem; if! is the eigenfunction and E is the corresponding eigenvalue. 
We've seen in MathChapter G that operators can be represented by matrices, and so the 
matrix equation 

Ac =.AC (H.2) 

which is analogous to Equation H.l, is calledl a matrix eigenvalue problem, where c is 
an eigenvector of the matrix A and A. is the corresponding eigenvalue. Equations H. l 
and H.2 suggest that there is a strong relationship between the Schrodinger equation 
and a matrix eigenvalue problem. We have seen this relationship in Chapter 8, but we 
didn't develop it there. In fact, quantum mechanics can be presented entirely in terms of 
matrices instead of differential equations as we have done in this book. It 's traditional for 
quantum chemistry to be presented in terms of differential equations because chemistry 
students are presumably more comfortable or familiar with differential equations than 
with matrices; but, in fact, matrix algebra is much easier than differential equations, 
and most research in molecular quantum mechanics is couched in terms of matrices 
and matrix eigenvalue problems. 

To see explicitly the relation between the Schrodinger equation and a matrix 
eigenvalue problem, we expand the (unknown) eigenfunction if! in Equation H. l in 
terms of some convenient set of (real and normalized) functions <Pi: 

N 

1/1 = L C;</l; (H.3) 
i = I 

As N gets larger and larger, we expect Equation H.3 to become more and more exact 
if we choose the ¢; well. The unknown nature of if! is now represented by the set of 4 2 7 
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unknown coefficients {ed. We substitute Equation H.3 into Equation H.l, multiply by 
<Pj, and then integrate over all the coordinates to obtain the set of algebraic equations 

H , ,c, + H 12C2 + ... + H 1NCN = E(c, + c2S12 + ... + cNS1N) 

H21c1 + H22c2 + ... + H2NcN = E(c1S21 + c2 + ... + cNS1N) 
(H.4) 

= 

where the 

(H.5) 

and the 

are called matrix elements. We have used the fact that the</>; are normalized (S;; = 1) 
in writing Equation H.4. We can write Equation H.4 as a matrix eigenvalue problem 

Hc=ESc (H.6) 

Equation H.6 is equivalent to Equation 8.38. This type of equation appears oHen in 
quantum chemistry, and will appear repeatedly in later chapters. Equation H.6 becomes 
the same as Equation H.2 (with A = s- 1H) if we multiply Equation H.6 from the 
left by s-1• Thus, we see that the Schrodinger equation can be expressed as a matrix 
eigenvalue problem. 

Let's look at Equation H.2 more closely. Equation H.2 represents the system of 
homogeneous linear equations 

(a, I - A.)c, + a12C2 + ... + a1NCN = 0 

a 21c1 + (a22 - A.)c2 + · · · + a2NcN = 0 
(H.7) 

As we have seen a number of times before, the determinant of the c.i 's must be equal to 
zero in order to have a nontrivial solution; in other words, a solution where not all the 
c1 =0. Thus, we write 

det(A - A.I) = 0 (H.8) 

which leads to the secular equation, which is an Nth-degree polynomial equation in A.. 
The solution to this equation gives us N eigenvalues in Equation H.2. Associated with 
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each eigenvalue is an eigenvector. We obtain each eigenvector by substituting one of 
the values of A. into Equation H.4 and then solving for the c; 's. We did this repeatedly 
in Chapter 8. 

EXAMPLE H- 1 
Find the eigenvalues and eigenvectors of 

A=(~ ~) 
where a is a constant. 

SOLUTION: The determinant of A - A.I is given by 

det(A - A.I) = = (a - A.)2 - 1 = 0 
l
a - A. 1 I 

1 a - A. 

and so the eigenvalues are given by the solution to (a - A.)2 - I= 0, or A. = a± I. The 
equations for the eigenvectors are (see Equation H.7) 

(a - A.)c 1 + c2 = 0 

c1 +(a - A.)c2 = 0 

lfwe substitute A. = a+ J into these equations, we obtain 

- Ct + C2 = 0 

Cl - C2 = 0 

or c1 = c2. Thus, the eigenvector is (c1i c1) , where c1 is an arbitrary constant. We can 
fix the value of c1 by requiring that the eigenvector be normalized, in which case we 
have 

-( l/ .Ji) 
C1 - l/..J2 

The other normalized eigenvector is given by 

c = ( 1;.J2) 
2 - l/.J2 

It's an easy exercise to verify that Ac 1 = A. 1c 1 and that Ac2 = A.2c2. 

In Example H- 1, we solved a 2 x 2 eigenvalue problem. The algebra was simple 
because we had to solve only a quadratic equation to find the two eigenvalues. The alge­
bra increases drastically as we go on to problems of dimension greater than two; even a 

429 



430 MathChapter H I Matr ix Eigenva lue Prob lems 

3 x 3 system leads to a cubic equation for A., which is usually quite tedious to solve, and 
the tedium grows rapidly with the size of the matrix. There are a number ofuser-friendly 
mathematical computer programs available nowadays that can easily handle very large 
matrices. Three such programs are MathCad, Maple, and Mathematica, each of which 
can perfo1m algebraic manipulations as well as do numerical calculations. At least one 
of these programs is available in most chemistry departments, and you should learn 
how to use one of these programs. Any of these programs, as well as others, can solve 
for all the eigenvalues and corresponding eigenvectors of a sizable matrix in seconds. 

Note that the two eigenvectors in Example H- 1 are orthonormal because 

c , . c, = (}i}i + }i}i) = 1 

C2 · C2 = [ }i ~ + ( - ~) ( - ~) J = 1 

and 

This is generally true for eigenvectors of distinct eigenvalues of a symmetric matrix; in 
other words, one for which A = Ar. This result is completely analogous to the fact 
that the nondegenerate eigenfunctions of Hermitian operators are orthonormal (see 
Section 4.6). Recall that a definition of a Hermitian operator A is 

(H.9) 

Ifwe let Aij = f dr:1/ft A1/lj , then Equation H.9 says that 

(Hermitian matrix) (H.10) 

A symmetrical matrix would have A;1 = A Ji· Equation H.10 is the extension of the 
definition of a symmetric matrix to a complex space, where the elements of the matrices 
may be complex. If A satisfies Equation H.10, it is said to be a Hermitian matrix . 
All matrices in quantum mechanics must be Hermitian because the eigenvalues of a 
Hermitian matrix are real, just as the eigenvalues of a Hermitian operator are real (see 
Section 4.6). 

EXAMPLE H-2 
Show that the eigenvectors of a Hermitian matrix are real and that the eigenvectors 
corresponding to distinct eigenvalues are orthogonal. 

SOLUTION: Start with Acj = A. j cj . Multiply both sides from the left by c7 to obtain 
c; Acj = A. j c7cj, which we write in the notation 

(H. l l ) 
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Now multiply A*c; = A.;c; from the left by cj to obtain cjA*c; = ),;cj c;, which we 
write as 

(H.12) 

But A is Hermitian, so Aij = A j;- Furthermore, cj c; = c7cj because the dot product of 
t\vo vectors is commutative. Comparing Equations H. I I and H. l 2 gives 

(H.13) 

If i = j , c7cj :=:: 0, and so ), j = A. j, which says that the eigenvalues are real. If i =I= j , 
then A; =I= A. j if there is no degeneracy, and so c7cj = 0, which says that C; and cj are 
orthogonal. 

Let's go back to Equation H.2, which we will write in the form 

k = 1, 2, ... , N (H.14) 

There are N eigenvalues A.k and N corresponding eigenvectors, ck. Now let's nom1alize 
the ck and form a matrix 

(H.15) 

where the notation means that the columns of S are the (normalized) eigenvectors 
of A. Because the columns of S consist of the eigenvectors of A, and because these 
eigenvectors form an orthonormal set if A is symmetric (which it usually is), S is 
an orthogonal matrix. In other words, s- 1 = sT. Furthermore, the matrix s has a 
remarkable property that we can see by operating on S with A to obtain (Problem H- 6) 

AS = (Ac1, Ac2, ... , AcN) 

= (A.1C1, A.2C2, ... , A.NcN) 

= SD (H.16) 

where 

o ~ (I 
0 0 

n A.2 0 
(H.17) 

0 0 

is a diagonal matrix whose elements are the eigenvalues of A. 
If we multiply Equation H.16 from the left by s-1, then we obtain 

(H.18) 
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because S is orthogonal. Equation H. 18 is called a similarity transformation. We say that 
the matrix A has been diagonalized by the similarity transformation in Equation H.18. 
Diagonalizing a matrix A is completely equivalent to solving the eigenvalue problem 
in Equation H.2, or, because Equations H. l and H.2 are equivalent, diagonalizing 
the Hamiltonian matrix is completely equivalent to solving the Schrodinger equation. 
Physically, A and D represent the same operation (such as a rotation or a reflection 
through a plane). Their different forms result from the fact that D is expressed in an 
optimum, or natural, coordinate system. Because of the central importance of matrix 
diagonalization in quantum mechanics, there are many sophisticated and efficient 
algorithms for matrix diagonalization in the numerical analysis literature. 

EXAMPLE H-3 
Diagonalize the matrix A in Example H- 1. 

SOLUTION: The matrix Sis given by 

- ~) 
Ji 

The inverse of S is 

s- '= ( ~ 
Ji 

- ~) 
Ji 

Using Equation H. l8, we have 

=(a + 1 . 0 ) = D 
0 a - l 

Notice that the elements of D are the eigenvalues of A. Notice also that the trace of A 
is equal to the trace of D, which equals A1 + A.2 (Problem H- 12). 

Problems 

H-1. Determine the eigenvalues and eigenvectors of A= ( ! ! ) . 
H . . . fA ( I - 2) -2. Determme the eigenvalues and eigenvectors o = _

2 
l . 



Problems 

H- 3. 

H-4. 

Det"minc tho e igcnv~u" •nd oigenvoctor.; of A = ( i 
Determine the eigenvalues and eigenvectors of A= ( ~ 

- I 

0 I) 
I 0 . 
0 0 

0 -1) 
I 0 . 
0 I 

H-5. Show that the matrix A = ( ~i 0 
l + i - 1- i 

1- i ) 
- 1

3
+ i is Hermitian. 

H-6. Verify that (A. 1C1 , AzCz, ... ' ANCN) =SD in Equation H.16. 

H- 7. The three eigenvectors of A in Problem H-4 are c1(- I, 0, I), c2(0. I, 0), and c3(1, 0, I), 

where c i. c2, and c3 are arbitrary. Choose them so that the three eigenvectors are normalized. 
Now form the matrix S whose columns consist of the three normalized eigenvectors. Find 

the inverse of sand then show explicitly that s-1 = sr, or thats is indeed orthogonal. 

H-8. Diagonalize the matrix in Problem H- 1. 

H-9. Diagonalize the matrix in Problem H- 2. 

H- 1 O. Diagonalize the matrix in Problem H-3. 

H- 11 . Diagonalize the matrix in Problem H-4. 

H- 12. Show that Tr D = Tr A. 

H- 13. Programs such as MathCad and Mathematica can find the eigenvalues and correspond­

ing eigenvectors oflarge matrices in seconds. Use one of these programs to find the eigen­
values and corresponding eigenvectors of 

a 0 0 0 

l a 0 0 0 

0 l a 0 0 
A= 

0 0 a 0 

0 0 0 I a 

0 0 0 a 
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