MATHCHAPTER E

Spherical Coordinates

Although cartesian coordinates (x, y, and z) are suitable for many problems, there are
many other problems for which they prove to be cumbersome. A particularly important
type of such a problem occurs when the system being described has some sort of a
natural center, as in the case of an atom, where the (heavy) nucleus serves as one. In
describing atomic systems, as well as many other systems, it is most convenient to use
spherical coordinates (Figure E.1).
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Instead of locating a point in space by specifying the cartesian coordinates x, v,
and z, we can equally well locate the same point by specifying the spherical coordinates
r, 8, and ¢. From Figure E.1, we can see that the relations between the two sets of
coordinates are given by

X =rsinf cos ¢
y=rsin@ sin ¢ (E.1)
z=rcosf 255
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This coordinate system is called a spherical coordinate system because the graph of the
equation r = ¢ = constant is a sphere of radius ¢ centered at the origin.

Occasionally, we need to know r, @, and ¢ in terms of x, y, and z. These relations
are given by (Problem E-1)

1/2
r= (X2 —+ }:2 +22)

z ;
cosf = PR WY, (E.2)

-

tan ¢ =

ElE

Any point on the surface of a sphere of unitradius can be specified by the values of 8
and ¢. The angle 6 represents the declination from the north pole,and hence 0 <6 <.
The angle ¢ represents the angle about the equator, and so 0 < ¢ < 27. Although there
is a natural zero value for 6 (along the north pole), there is none for ¢p. Conventionally,
the angle ¢ is measured from the x axis, as illustrated in Figure E.1. Note that r, being
the distance from the origin, is intrinsically a positive quantity. In mathematical terms,
0<r <.

In Chapter 6, we will encounter integrals involving spherical coordinates. The
differential volume element in cartesian coordinates is dxdydz, but it is not quite
so simple in spherical coordinates. Figure E.2 shows a differential volume element
in spherical coordinates, which can be seen to be

dV = (rsin 8d)(rd0)dr = 72 sin Odrdfd¢ (E.3)

Let’s use Equation E.3 to evaluate the volume of a sphere of radius a. In this case,
0<r<a,0<f <m,and 0 < ¢ < 2x. Therefore,

a T 2w 3 3
v:f rzdrf sinedef dp = (“_) L
0 0 0 3 3

Similarly, if we integrate only over 8 and ¢, then we obtain
b3 2m
dV = rdr f sin 66 f d¢ = dmridr (E.4)
0 0

This quantity is the volume of a spherical shell of radius » and thickness dr (Figure E.3).
The factor 4777 represents the surface area of the spherical shell and dr is its thickness.
The quantity

dA =r?sin 0d0de (E.5)
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FIGURE E.2
A geometrical construction of the differential volume element in spherical coordinates.

FIGURE E3

A spherical shell of radius r and thickness
dr. The volume of such a shell is 47 r2dr,
which is its area (47 r2) times its thickness
(dr).

is the differential area on the surface of a sphere of radius r. (See Figure E.2.) If we
integrate Equation E.S over all values of @ and ¢, then we obtain A = 4772, the area of
the surface of a sphere of radius r.
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Often, the integral we need to evaluate will be of the form

oo T 2
[ = f f f F(r, 0, ¢)r’ sin 6drdode (E.6)
0 0 0

When writing multiple integrals, for convenience we use a notation that treats an integral
like an operator. To this end, we write the triple integral in Equation E.6 in the form

fo°) T 2w
;:f drrzf do sinb‘f doF(r, 0, ¢) (E.7)
0 0 0

In Equation E.7, each integral “acts on” everything that lies to its right; in other
words, we first integrate F(r, 6, ¢) over ¢ from 0 to 2w, then multiply the result
by sin 6 and integrate over 6 from 0 to 7, and finally multiply that result by »? and
integrate over r from 0 to co. The advantage of the notation in Equation E.7 is that the
integration variable and its associated limits are always unambiguous. As an example
of the application of this notation, let’s evaluate Equation E.7 with

F(r,0,¢)= ;rze" sin” 6 cos> @
327

(We will learn in Chapter 7 that this function is the square of a 2p, hydrogen atomic
orbital.) If we substitute F(r, 8, ¢) into Equation E.7, we obtain

1

I =—
327 Jo

0o b3 2w
drr? f de sin @ f de r’e " sin® 6 cos® ¢
0 0

The integral over ¢ gives

2w
f d¢ cos’ p=m
0
so that

oo T
1= if drr2] df sinf rle " sin’ 6 (E.8)
32 Jo 0

The integral over 0, Iy, is
I, = f de sin® 0
0

It is often convenient to perform a transformation of variables and let x = cos 8 in
integrals involving 6. Then sin 6d6 becomes —dx and the limits become +1 to —1, so
in this case we have

i "'1 l 2 4
Iezf desin3e=—f dx(l—x2)=f dr(l—xH=2—-Z=-
0 1 ~1 3 3
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Using this result in Equation E.§ gives

where we have used the general integral

oo
/ x"edx =n!
0

This final result for / simply shows that our above expression fora 2p, hydrogen atomic
orbital is normalized.

Frequently, the integrand in Equation E.7 will be a function only of r, in which
case we say that the integrand is spherically symmetric. Let’s look at Equation E.7
when F(r, 0, ¢)= f(r):

oo T 2m
1= f drr? f de sin 0 f def(r) (E.9)
0 ] 0

Because f(r) is independent of § and ¢, we can integrate over ¢ to get 27 and then

integrate over 0 to get 2:
b4 1
f sin@d@:f dx =2
0 -1

Therefore, Equation E.9 becomes
oo
I = f f(r)amridr (E.10)
0

The point hereisthatif F(r, 0, ¢) = f(r), then Equation E.7 becomes effectively a one-
dimensional integral with a factor of 4 r?dr multiplying the integrand. The quantity
4mr%dr is the volume of a spherical shell of radius r and thickness d'r.

EXAMPLE E-1
We will learn in Chapter 7 thata s hydrogen atomic orbital is given by

1 .
e

= Iy
(mag)'/?

Show that the square of this function is normalized.



260

MathChapter E / Spherical Coordinates

SOLUTION: Realize that f(r) is a spherically symmetric function of x, y, and z,
where r = (x2 + y% + z2)1/2. Therefore, we use Equation E.10 and write

Gl 2 dr [ 5 oy
sz for)axr dr:—3f rée="%dy
0 way Jo

4 2 1
ay (2/ag?

If we restrict ourselves to the surface of a sphere of unit radius, then the angular
part of Equation E.5 gives us the differential surface area

dA = sin 0d0d¢ (E.11)

If we integrate over the entire spherical surface (0 <6 <m, 0 < ¢ < 2m), then

b3 2
A= f sin 6d6 f de = 4x (E.12)
0 0

which is the area of a sphere of unit radius.

We call the solid enclosed by the surface that connects the origin and the aread A a
solid angle, as shown in Figure E.4. Because of Equation E.12, we say that a complete
solid angle is 477, just as we say that a complete angle of a circle is 27 . We often denote
a solid angle by d€2, so that we sometimes write

dS2 = sin 0dOde (E.13)
and Equation E.12 becomes
f dQ =4m (E.14)
sphere

‘dQ

; FIGUREE.4
)/ The solid angle, d$2, subtended by the
differential area element d A = sin 8d0dg¢.
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In discussing the quantum theory of a hydrogen atom in Chapter 7, we will fre-
quently encounter angular integrals of the form

i3 2
I =f do sinef doF 0, d) (E.15)
0 0

Note that we are integrating F (6, ¢) over the surface of a sphere. For example, we will
encounter the integral

15

ez =
87 Jo

27 T
d¢ f dé(sin® 0 cos® 0) sin 6
0

The value of this integral is

bid 27
= (E) f de sin® 6 cos® 6 sin 0 f d¢
8 0 0

1
=£f(l—x2)x2dng|:g—g:|=l
4 J_q 4 13 5

EXAMPLE E-2
Show that

n 27
1:] de sian do Y[, )Y 0, ¢)=0
0 0

where
3\ V2
Y6, ¢)=— (—) ¢'?sin 6
8
and
3\ "2
Yl_l(ga @5) = (—) E_“‘b sin &
8
SOLUTION:

3 b 2 .
[=—-—— df sin’ 6 f dg e 4¢
8 Jo 0

The integral over ¢ is an integral over a complete cycle of sin 2¢p and cos 2¢ and
therefore I = (0. We say that Yll(t?, ¢) and Yl_l(ﬁ, ¢) are orthogonal over the surface
of a unit sphere.
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There is one final topic involving spherical coordinates that we should discuss here.
The operator

(32 92 az)f_aszrazf 3 f

daxz  9yr  0z2 axz  ayr  9z2

occurs frequently in physical problems. The operator

I s

=— 4 —4 — E.16
ax2  9yr 922 (E16)

is called the Laplacian operator. When dealing with problems involving a center of
symmetry, so that we use spherical coordinates, we express V2 in terms of spherical
coordinates rather than cartesian coordinates. The conversion of V? from cartesian
coordinates to spherical coordinates can be carried out starting with Equation E.1, but
it is a long, tedious exercise involving partial derivatives that perhaps you should do
once, but probably never again. The final result is (see Problems E-13 and E-14)

2
V2 ii(f‘zi)—F 1 a(sinﬁi)—l—il 2 E1)

T Par ar r2 sin 6 96 a0 r2sin 0 d¢?

EXAMPLEE-3
Show that u(r, @, ¢) = 1/r is a solution to V2u = 0. (This equation is called Laplace s
equation.)

SOLUTION: The fact that # depends only upon » means that V2u reduces to

Viu= 19 (rzﬁ)
29y ar

If we substitute v = I/r into this expression, we find that 728u/dr = —1 and that

Vi =0.

EXAMPLEE-4 .

Show thatu (@, ¢) = YII(H. ¢) given in Example E-2 satisfies the equation Vi = — U,
r

where ¢ is a constant, What is the value of ¢?

SOLUTION: Because u(f, ¢) is independent of r-, we start with

1 a8 (. @ 1 92
Vig=— — (sm@i) + _72—“
r2sin @ 96 a8 r2 sin” @ g2
Substituting

3\12
u(9.¢)=—(§) ¢'?sind
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into V2u gives

12 i ;
3 . e .
Vig=— (—) [ e_ (cos®> @ — sin® 9) — %e"’:’]
S r2sinf r2sin” 6

B (3 )”2 e (1-2sin’6 1
a S r2 sin & sin

_2( 3 )1,12 % sin@
T \sr r2

orc=-—2.

Problems

E-1. Derive Equations E.2 from Equations E.1.

E-2. Express the following points given in cartesian coordinates in terms of spherical coordi-
nates: (x, v, z): (L, 0,0); (0,1L0); (0,0, 1); (0,0,=1).

E-3. Describe the graphs of the following equations:

(a) r=>5 (b) 8 =m/4 (c) dp=m/2

E-4. Use Equation E.3 to determine the volume of a hemisphere of radius a.
E-5. Use Equation E.5 to determine the surface area of a hemisphere of radius a.

E-6. Evaluate the integral
g
1:[ cos® 6 sin’ #d6
0

by letting x =cos 6.

E-7. We will learn in Chapter 7 that a 2p, hydrogen atom orbital is given by

1
42

gl . x
re~"/?sin 6 sin ¢

wZ;;\. =

Show that v/, is normalized. (Don’t forget to square 1/, first.)

E-8. We will learn in Chapter 7 that a 25 hydrogen atomic orbital is given by

Yy = 2 —rye"?

1
44/ 2m

Show that 1, is normalized.
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E-9. Show that
. 3\ 12
Yr(a, =|— cosf
6, ¢) ( 4}{)
3\12
Y1[(95¢}=—(§) e'?sing
and
3\12
Y1_1(9,¢):(—) e~ sin 0
8

are orthonormal over the surface of a sphere.
E-10. Evaluate the average of cos # and cos? # over the surface of a sphere.

E-11. We shall frequently use the notation dr to represent the volume element in spherical
coordinates. Evaluate the integral

1= f dre™" cos® 8

where the integral is over all space (in other words, over all possible values of r, #, and ¢).
E-12. Show that the two functions
firy=e"cos® and fo(r)=(2—r)e "?cosb

are orthogonal over all space (in other words, over all possible values of r, @, and ¢).

E-13. Consider the transformation from cartesian coordinates to plane polar coordinates,

! (r, 0)
) |
1
bl |
: x
where
x =rcosft r= ()r2+y2}Uz
_ ¥ (1)
y=rsinf 6 =tan™ (—)
X

If a function f(r, #) depends upon the polar coordinates r and &, then the chain rule of
partial differentiation says that

Y _ (3N (¥ afy (98
(5) B (ar)g (ax)\. * (39),_ (ax),. @
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af af ar af dd
5).-G).G).+).G) ®
dy/y \dr/Jg\dy/, \96/,\dy/,
For simplicity, we will assume that r is equal to a constant, [, so that we can ignore terms
involving derivatives with respect to r. In other words, we will consider a particle that is

constrained to move on the circumference of a circle. This system is sometimes called a
particle on a ring. Using equations 1 and 2, show that

=) - D) e
ax /., { 96/, av /., I} a0/,
Now apply equation 2 again to show that
(55), - -lw(@),), )
ax? Bx a6 (')x ax/,
l [ sin @ (i):” (_sinﬁ)
a6 a6 I}

_schosG ‘;m e 82)"

and that

|
s
I
\..._../

Similarly, show that
(82)") _ sinfcosf (af) N cos? 6 (Bzf)
2], 2 0 2\ 992

2 25 2
L (a;)
ax2  9y2 12\ 902

and that

Vif=
E-14. Generalize Problem E—13 to the case of a particle moving in a plane under the influence

of a central force; in other words, convert

, 9r @
ana + o
ax?  ay?

to plane polar coordinates, this time without assuming that r is a constant. Use the method of
separation of variables to separate the equation for this problem. Solve the angular equation.

E-15. Show that u(r, 8, ¢) = r sin £ cos ¢ satisfies Laplace’s equation, Vi =0.

E-16. Show that u(r, 6, ¢) = r2 sin’ 6 cos 2¢ satisfies Laplace’s equation, VZu = 0.





