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1. INTRODUCTION

Density functional theory (DFT) of electronic structure has made
an unparalleled impact on the application of quantum mechanics to
interesting and challenging problems in chemistry. As evidenced by
some recent reviews, ' the number of applications is growing
rapidly by the year and some of the latest and most significant studies
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include the following: the understanding and design of catalytic
processes in enzymes and zeolites, electron transport, solar energy
harvesting and conversion, drug design in medicine, as well as many
other problems in science and technology.

The story behind the success of DFT is the search for the
exchange—correlation functional that uses the electron density
to describe the intricate many-body effects within a single particle
formalism. Despite the application and success of DFT in many
branches of science and engineering, in this review we want to
focus on understanding current and future challenges for DFT. If
the exchange-correlation functional that is used was exact, then
DFT would correctly describe the quantum nature of matter.
Indeed, it is the approximate nature of the exchange—correlation
functional that is the reason both for the success and the failure of
DFT applications. Early developments of DFT focused on the
most basic challenges in chemistry, in particular, the ability to
have functionals that could give a reasonable description of both
the geometries and dissociation energies of molecules. The next
major challenge for DFT arose from the need to accurately
predict reaction barrier heights in order to determine the kinetics
of chemical reactions as well as to describe van der Waals
interactions. Whether DFT can predict the small energy differ-
ences associated with van der Waals interactions or if additional
corrections or nonlocal functionals of the density are needed has
been the subject of much debate and current research. This
interaction, although one of the weakest, is key to the accurate
understanding of the biological processes involved in many
drug—protein and protein—protein interactions.

All these challenges have been well-addressed by current
developments, as described in the literature. However, it is our
contention that there are even more significant challenges that
DFT, and specifically the exchange —correlation functional, must
overcome in order to fulfill its full promise. New and deeper
theoretical insights are needed to aid the development of new
functionals. These are essential for the future development of
DEFT. One way to facilitate this advance, as we will try to illustrate
in this review, is to understand more deeply those situations
where DFT exhibits important failures.

An intriguing aspect of DFT is that even the simplest systems
can show intricacies and challenges reflecting those of much
larger and complex systems. One example of this is the under-
standing encompassed in the widely used term, “strong correla-
tion” found in the physics literature. Strong correlation is meant
to refer to the breakdown of the single-particle picture, perhaps
even of DFT itself, which is based on a determinant of single-
particle Kohn—Sham orbitals. However, it is essential to see it
only as a breakdown of the currently used density functional
approximations. Strongly correlated systems offer significant new
challenges for the functional. In this review we hope to demon-
strate that the challenge of strong correlation for density func-
tionals can be illustrated by the behavior of the energy of a single
hydrogen atom. This understanding will help to realize the
enormous potential of DFT.

The Schrodinger equation that describes the quantum nature
of matter is

HY = E¥ (1)

where the Hamiltonian, H, for a Coulombic system is given by

el Zy 1
H= -3V §7|ri_rA|+§jVij (2)

1

with a specified set of nuclei with charges Z, and positions r and
number of electrons N. The task is to simply minimize the energy
over all possible antisymmetric wave functions, ¥ (x;,%,,X3... Xx7),
where x; contains the spatial coordinate r; and spin coordinate 0;.
This enables us to find the minimizing ¥ and hence the ground
state energy, E. However, technically, this is far from trivial, and
has been summarized by Paul Dirac in the following quote:

“The fundamental laws necessary for the mathematical
treatment of a large part of physics and the whole of
chemistry are thus completely known, and the difficulty
lies only in the fact that application of these laws leads to
equations that are too complex to be solved.”

In DFT, the problem is reformulated in a philosophically and
computationally different manner. The basic foundation of DFT
is the Hohenberg—Kohn theorem,'” which states that the
external potential is a functional of the ground-state density. In
other words, the density (an observable in 3D space) is used to
describe the complicated physics behind the interactions be-
tween electrons and, therefore, determines everything about the
system. As Kohn noted in his Nobel lecture, DFT “has been most
useful for systems of very many electrons where wave function
methods encounter and are stopped by the exponential wall”."?
In Kohn—Sham (KS) theory,"* this is formulated as a simple
expression for the ground state energy

E[p] = Ti[p] + Vielo] + J[o] + Exc[p] 3)

where the forms of some of the functionals are explicitly known.
The kinetic energy for the KS noninteracting reference system is

T = 3 0l - Vle) @

in terms of {¢;}, the set of one electron KS orbitals. The electron
density of the KS reference system is given by

plr) = 3 |40 ()

The other two known energy components are the nucleus
electron potential energy, expressed in terms of the external
potential due to the nuclei, v(r) = —X4(Za/|r — Ryl)

mm=/wwm&

and the classical electron—electron repulsion energy is

o = L[ [P

Much is known about the key remaining term, the exchange—
correlation functional, E,[p], although no explicit form is avail-
able. It can be expressed in the constrained search formulation for
density functionals'®

Eyc [P] = qu_i.np (lII|T + VeE|lp> =T [p] _J[P]
= (T[] = T[p]) + (Veelp] —J[p])

It can also be expressed elegantly through the adiabatic
connection'®"”

Elp] = /01(‘1’1\Vee|q’/1> dA —Jle]
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Many density functional approximations (DFA) have been
developed for practical applications. DFT applications have
increased enormously in many areas of chemistry due to the
excellent performance of these approximate functionals. How-
ever, it is important for DFT to fully connect to its roots as an
exact theory rather than rest on its laurels as the “best semi-
empirical” method, where the parameters are so successful
because they are not system dependent. The approach is
computationally very different from the direct solution of the
Schrodinger equation, where the time is spent in a search over
the whole of Hilbert space to find the wave function. In DFT,
with a given form for E,, the search is only to find the three-
dimensional density, which is a comparatively trivial problem.

In this review, we consider some of the challenges arising in
the construction of approximations to the exact exchange—
correlation functional. Despite the considerable success of cur-
rently used approximate functionals, there have also been a
number of significant failures. We will focus on both of these
aspects, but our primary emphasis will be on the failures. Before
we begin the main body of the review, we also want to highlight
some of the underlying themes that run throughout and also the
important relationship between chemistry itself and DFT. To
address the “challenges for DFT”, one might expect us to list the
chemically important molecules that DFT finds challenging.
However, we do not do this; instead, we try to place DFT and
more specifically the exchange —correlation functional, E,, at the
forefront. It is in fact the challenges of the functional that we will
attempt to understand. Despite the excellent progress to date in
the field of chemistry, our knowledge of how to actually build a
functional might still be quite limited. We know, in principle, we
should be able to make a functional that works for the whole of
chemistry, solid-state physics, and biology. But in practical
applications, there are many failures. These are not breakdowns
of the theory itself, but rather are only deficiencies of the
currently used approximate exchange—correlation functionals.
This can be most clearly seen in the two simplest molecules in the
whole of the chemical universe, namely, stretched Hj and
stretched H,. Even for these, all existing functionals fail. From
this failure alone, it seems clear that more in-depth thinking, at
quite a fundamental level, needs to be done on the nature of the
functionals that we are trying to develop. It is here that chemistry
can help us to understand the nature of the problem that we face.
We attempt to use the challenges of simple molecules and simple
questions about chemistry to probe the problems of the func-
tional. Also, perhaps more importantly, any understanding
gained will be useful in interpreting calculations and possible
errors caused by the use of approximate functionals in cases of
more complex chemistry. Understanding at the level of the
functional is, of course, easier in principle than in practice. But
this is the theme that we try to use throughout the review: a drive
to simplify and to understand.

1.1. What Are the Challenges for Density Functional Theory?

In this section, we summarize some of the challenges that DFT
faces. These range in nature from some that appear to have been
already “solved”, to others that are active current areas of
research. In addition, there are even more that are less under-
stood but are key to the continued development and the future
use of DFT.

1.1.1. Challenge 1: To Develop a Functional That Per-
forms Uniformly Better Than B3LYP. One of the main
challenges for DFT is to keep as its cornerstone some element

of simplicity. If DFT functionals become as complicated as full
configuration interaction (FCI) then the theory begins to lose
one of its main features, namely, its simplicity. This is especially
true of its computational nature. However, this simplicity must
not come at too great a cost, nor must it become an entirely
empirical method either. The beauty and challenge of density
functional theory as well as approximations to it, namely, DFA, is
that they lie somewhere in between. To appreciate the current
challenges for DFT, it is helpful to place them in an historical
context. One of the first great challenges for DFT in chemistry
was to provide an accurate description of geometries and binding
energies of simple molecules. DFT was widely used in the solid-
state physics community for many years before it was adopted by
the computational chemistry community. This is largely due to
the fact that the simplest functional, the local density approxima-
tion (LDA), did not perform well in many areas of chemistry.
Although LDA gives good geometries, it massively overbinds
molecules. The seminal work of Becke, Perdew, Langreth, and
Parr in the 1980s, which introduced the first derivative of the
density in the form of the generalized gradient approximation
(GGA), was the first step enabling chemists to use DFT
satisfactorily. The next major advance came with the inclusion
of a fraction of Hartree—Fock exact exchange (HF) in the
functional, as described by Becke in the early 1990s. This work
lead to the development of B3LYP,"®'? the most widely used of
all the functionals. B3LYP has enjoyed a remarkable performance
over a wide range of systems. Although new ideas have been
introduced into more recent functionals of different complexity,
B3LYP is still the most popular. Developing functionals that
improve upon B3LYP will clearly provide a significant advance
for DFT.

1.1.2. Challenge 2: The Need To Improve the Descrip-
tion of Reaction Barriers and Dispersion/van der Waals
Interactions. However, in order to achieve a more complete
description of chemistry, it is necessary to extend beyond a
molecule at its equilibrium geometry and to also describe weakly
interacting molecules as well as transition states in chemical
reactions. The description of reaction barriers is problematic for
LDA/GGA type functionals, because they systematically under-
estimate transition state barriers by several kilocalories/mole.
This systematic error requires correction before the functionals
can be used to describe potential energy surfaces. However, there
are also some very important chemical processes that, although
much smaller in the energetic scale, may be much more
important for large systems. One of these is the weak but very
important van der Waals force or London dispersion force, which
has long been known to be a problem for approximate func-
tionals. It is of key importance for the description of interactions
between closed-shell species. The basic understanding of this
problem can be seen from simple perturbation theory arguments
dating back to London.”® These stated that there should be an
attractive part of the energy that asymptotically decays as 1/ R
when the distance between the interacting units increases (R — c0).
Due to the local nature of the LDA or GGA functional form,
it is not possible for these functionals to have this behavior.
Nonlocal functionals involving Hartree—Fock are also complete-
ly wrong, since they all exhibit long-range repulsive behavior.
The performance of most popular functionals on simple weakly
bound dimers is extremely poor. The correct and efficient
description of the van der Waals attraction, covalent bonding
in chemistry and transition states all remain a challenge. This is
especially true with the increasing application of DFT to areas of
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biological importance where all these interactions can occur
simultaneously.

1.1.3. Challenge 3: To Understand the Significance of
Elp] vs E[{¢i€;}], OEP, and Beyond. Both of the challenges
described above are clearly to do with density functional approx-
imations. This undoubtedly is the most important aspect of DFT
and why it is such a widely used tool. However, in order to
develop and understand new and better functionals, it is im-
portant not to forget the connection to the exact solution of the
Schrodinger equation, namely, the exact exchange—correlation
functional. Sometimes when attention is focused on a particular
aspect of DFT, such as improved predictions of molecular
energies, better properties of solid-state matter, or the funda-
mental aspects of the mathematical form of the exchan-
ge—correlation functional, this facet may easily stand out as
the most important one while others are forgotten. However,
DFT needs to be viewed in all possible ways. Currently, there are
important challenges in understanding exactly how most widely
used approximations fit in with some known properties of the
exact functional. Some model systems, such as the uniform-
electron gas or the slowly varying electron gas, the scaling
relations, or systems with different electron—electron interac-
tions, have all provided exact conditions, which have proved
extremely useful in guiding the current development of func-
tionals. At the very basis of the all the approximations
used lies the important concept of noninteracting electrons, i.
e., the reference system of Kohn and Sham as described by sets of
orbitals {¢;} and eigenvalues {€;}. It is a basic challenge to
understand the meaning, if any, of this reference system for
chemistry. Alternatively, it may be considered merely as a pure
mathematical construct to which one should not attach any other
meaning than the density and its corresponding total energy. It is
important to understand, after a DFT calculation is performed,
if it is meaningful to look at anything else other than total energy,
i.e,, if the orbitals and eigenvalues have any further significance. It
may be useful in this respect to invoke potential functional theory
(PFT),*" an alternative view of DFT that uses the potential,
instead of the electron density, as the basic variable. The energy
minimization can be carried out by minimizing the energy with
respect to the potential. This provides the basis for the optimized
effective potential method (OEP) and the understanding of orbital
energies, which are functionals of the potential.

1.1.4. Challenge 4: Delocalization Error and Static
Correlation Error. This brings us to another very interesting
question raised by the performance of DFT, as highlighted by
large errors for one-electron systems. Any system with a single
electron is trivial and can be solved simply using the wave
function. However, DFT does not treat individual electrons in
the same way, but rather only considers their total density, p. So
one-electron systems play no special role in DFT; in fact, a single
electron can unphysically interact with itself, as has been known
for a long time in terms of self-interaction error.”> Of course the
exact functional does not have any self-interaction; ie., the
exchange energy exactly cancels the Coulomb energy for one
electron. This and similar errors are at the heart of many failures
with the currently used approximations. We believe that for DFT
to move forward into the future it is essential to see not just its
good performances but also to seek out and understand its
practical and theoretical inconsistencies. If we look back at some
previous challenges, it is clear that significant effort has been
made to improve performance on sets of many molecules as well
as to understand and to implement the OEP equations. However,

despite these efforts, most modern functionals can still have errors of
100 keal/mol in extremely simple systems. These can be connected
to systematic errors such as delocalization error and static correla-
tion error in more complex systems. These simple systems must not
be ignored, as they contain the key to a better understanding of the
functional that will lead to improvements throughout chemistry.
1.1.5. Challenge 5: The Energy of Two Protons Sepa-
rated by Infinity with One and Two Electrons: Strong
Correlation. The challenge of strongly correlated systems is a
very important frontier for DFT. To fully understand the
importance of these systems, they must be looked at within the
wider realm of electronic structure methods. Except for FCI and
Valence Bond Theory,” most theories currently struggle to
describe strongly correlated systems. This is evident from some
very simple tests involving infinitely separated protons with
varying numbers of electrons. Currently, all functionals fail even
for the simplest of these, infinitely stretched H; and infinitely
stretched H,. Although these systems may seem trivial, they are,
in our opinion, one of the great challenges for modern electronic
structure theory. The integer nature of electrons is of great
importance and it is key to understand this behavior for DFT. In
order to satisfy exact fundamental conditions and not to suffer
from systematic errors, the energy functionals must have the
correct discontinuous behavior at integer numbers of electrons.
This discontinuous behavior is key to give the energy gap and
correctly describe strong correlation and, from our perspective,
should never be ignored in the development of new theories.

2. THE ENTRANCE OF DFT INTO CHEMISTRY

From its earliest beginnings in the time of Thomas™ and
Fermi®® to Slater,”® the history of DFT has a checkered past.
These were all based upon approximations and were not
expected to give highly accurate results. However, this funda-
mentally changed upon the formulation of the Hohenberg—
Kohn theorem, which showed that an exact quantum mechanical
result could be obtained from a functional of the density. This
was quickly followed by the Kohn—Sham (KS) equations, which
offered a more constructive yet still exact formulation based on
noninteracting electrons, thereby linking DFT to the familiar
language and concepts of orbitals in chemistry. The Kohn—Sham
paper clearly formulated the challenge being one requiring the
construction of the exchange—correlation functional. Further-
more, the seminal paper suggested a simple path to begin tackling
the problem, using the local density approximation. This idea
quickly caught on as the basis of much of solid-state physics. It
took time for the chemistry community to take notice, even
though these ideas had been preceded in chemistry in the form of
Slater’s Xa theory.

24

2.1. Exchange—Correlation Functionals

In this section, it is our aim is to provide a rough historical
picture of the development of exchange—correlation functionals
and their application in chemistry. We will therefore outline
some of the key advances that have led to modern DFT in an
attempt to formulate a framework, which can help us to gain
insight into both the foundations and limitations of the theory.

2.1.1. LDA. Dating back to Dirac in 1930, the form of
exchange for the uniform electron gas was known to be”’

s = 227 [ o ©
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The functional for correlation was not derived from first
principles, instead Monte Carlo simulations of the uniform gas*®
were used to parametrize interpolations between the known
forms in the high- and low-density limits. There exist widely
used LDA correlatlon functionals developed by Voskoet al.>”
and Perdew™’

2.1.2. GGA. The uniform electron gas, although a beautiful
model system that has played a key role in the development of
functionals, has an incredibly different density to those found in
atomic or molecular systems. It is interesting to note Bright-
Wilson’s “proof/conjecture”®" proclaimed upon hearing the
presentation of the Hohenberg—Kohn theorem, which can be
summarized as: “I understand that the density tells you every-
thing; the cusps of the density tell you where the nuclei are, the
gradient of the density at the nucleus tells you what the nucleus is,
and the integral of the density tells you how many electrons you
have—therefore you have specified everything about your sys-
tem and Hamiltonian and hence all is known.” It should be noted
that the Hohenberg—Kohn proof is more general, as it applies to
any external potential not just the potential of nuclei (Coulombic
systems). However, this offered an insight of great importance
for chemistry: that knowledge of the gradient of the density, Vp,
is needed at the most fundamental level. Nevertheless, there has
been some confusion as to how to move on from the uniform
electron gas, where analytic expansions®> can give the exact
coefficients that should apply to each term in a gradient expan-
sion. The gradient expansion for the slowly varying uniform
electron gas is carried out in terms of the dimensionless reduced

gradient x = |V,o|/,o4/3 [or similarly 2(377%)"/3s = x] and has the
form
1/3
7
[P0 e a
4\7 43270(372)"

(7)

However, this idea gives rise to major problems when applied
directly to atoms and molecules, because their densities are
anything but slowly varying. This is not due to the nuclei, where
x is well-defined, but rather to the atomic tails, as for any
exponentially decaying density x — oo0. Functionals that are
useful for chemistry took a while to be developed, due in part to
this problem. This is a useful illustration of one of the main
challenges of this field, namely, the juxtaposition of three areas:
mathematical derivation, challenges in chemistry (for this pro-
blem x — o0), and the different challenges in solid state physics,
where x never diverges. Here the solution was the development
of the generalized gradient approximation (GGA), which, for
exchange, takes the simple form:

B8] = [ p¥oF(s) dr (8)

where F(x) can be chosen to obey the gradient expansion
(eq 7) in the low x limit. There are now many exchange
functionals of the GGA type and the two most commonly used
are B88>

1/3 2
ey mm% Y

'y T 1 + 6fx, sinh ™ x,

(9)

and PBE*

3/3\'2 st
EPBE _ _/ 4/3 (2 (2 _ M 1y 10
x PRI T (10)

As with LDA, the development of functionals for correlation has
been more complex and taken longer to develop. Even the
coordinate scaling relations for correlation®>* are much trickier
and have not been widely used. Currently, there are two main
functionals that are well-established, LYP'® and PBE.>* Many
other GGA functionals have been developed and described in the
literature, 33343751

2.1.3. Meta-GGA. In chemistry, the move from LDA to GGA
brought about a massive improvement in functionals, of roughly
an order of magnitude in binding energies. The next obvious step
was to include higher-order derivatives of the density. This,
however, did not provide the expected major advances in
functional development. The term meta-GGA was coined by
Perdew and Schmidt, when they proposed the famous Jacob’s
ladder of approximations™ to the exact exchange—correlation
functional. This is a ladder of functionals that progresses from
the Hartree world, with no exchange—correlation, toward the
“heaven” of chemical accuracy (within 1 kcal/mol for energetics).
The ladder starts with the first rung as the LDA, the next rung
GGA, and the third rung meta-GGA, which incorporates other
local ingredients of the form EMGGA = [ p4/ *F(p(r),vp(r),
v2p(r),7(r)...) dr, including the kinetic energy density,
T = (1/2)%|Vé,|>. This is followed by the fourth rung with
nonlocal functionals of the occupied orbitals such as functionals
that contain some Hartree—Fock exchange type terms (hyper—
GGA) and the fifth rung that uses all the orbitals (both occupied
and virtual) and their corresponding eigenvalues such as RPA
(random phase approximation) and MP2 (second order many-
body perturbation theory). The original proposition of a ladder is
that each rung satisfies certain exact constraints and when a form for a
certain rung on the ladder is given, the step up to the next rung should
have functionals based on the previous rungs (to ensure satisfaction of
the constraints). It is also hoped that each step up the ladder (maybe
because it satisfies more exact constraints) should improve the
performance and each level gets closer to the heaven of chemical
accuracy. This concept in functional development has stimulated and
inspired many ideas, even if they do not exactly stick to the full
philosophy of the rungs as originally proposed. After that historical
digression, we now return to the meta-GGA. At this level, we have
functionals including the kinetic energy density, 7 (sometimes defined
without the factor of 1/2). There have been several functionals using
7, especially correlation functionals that use the fact that for one-
orbital systems 7, = (Vp,)?/8p, to eliminate 6—0 correlation in
one-orbital systems or regions. Functionals at this level originated
with ideas from Becke such as B88C™* or B95** or Becke—Roussel.>®
More recently, functionals have been derived by Perdew and
coauthors,*®~ 5 including TPSS.® Several other meta-GGA func-
tionals with somewhat different ideas have also been developed.®'

2.1.4. Hybrid Functionals. Probably the last clear advance in
the development of exchange—correlation funtionals came in
1993, with the inclusion of some Hartree—Fock exchange (HF)
into the functional.

E)I(—IF _ Z 1) ¢ (1) ¢4 (r')

/4)10 }0
245 [r — /|

dr dr’

(11)
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The original idea came from Axel Becke, who used the adiabatic
connection to argue that the functional should contain some ETF
and proposed a linear model that mixes it with some local DFA
exchange and correlation type functionals.
1 1
BHH HE LDA
Exc = EEX + EWI (12)
This gave rise to functionals, such as BHLYP,®” which did not
perform uniformly better than GGA functionals. However, the
next step that quickly followed was to introduce a little bit of
experimental data to refine the idea,"® giving rise to

EP = aE™F 4+ (1 —a)EMP* + bAEP® 4 (ESSA
+ (1 — Q)ELPA

(13)

where the parameters a, b, and ¢ were fitted to a set of
experimental data, the G1 data set of Pople and co-workers.
This was implemented into the Gaussian package®® by

EBWP — 02FMF 4 0.8EPY 4 0.72AEP® 4 0.81E1Y

+ 0.19EY"N (14)

using the LYP functional and also VWN [with some confusion
over which parametrization (Il or V) to use]. This functional has
been incredibly successful and extremely widely used, to the
extent that in many circles the term DFT is almost synonymous
with running a B3LYP calculation. B3LYP has possibly out-
performed all expectations, which is excellent for the field of
chemistry as it has enabled numerous supporting and illuminat-
ing calculations to be carried out. However, B3LYP is successful
as a result of some cancellation of errors, which creates a
tremendous challenge for the development of new and better
exchange—correlation functionals. There are also a large varie

of other hybrid functionals found in the literature:***>°>%°~%

2.1.5. Recent Developments in Functionals. We shall

now elaborate some of the recent developments in functionals
that have begun to make a significant impact in the field:

o Range separation: One idea, originally from the groups of
Savin®'~® and Gill,**®S has been to separate the electron—
electron interaction into two parts, one long-range and the
other short-range. A range separation based on the error
function is most commonly used because of the simplicity in
calculating the integrals in a Gaussian basis set

1 erf (ury) n erfe(ur;)
Vi}' 7',']' 7','/'

long range

short range

and long-range Hartree—Fock is given by

dr; dr,

(15)

The corresponding form of the long-range LDA exchange
energy can be calculated from the explicit form of the LDA
exchange-hole, to give®®
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The key is then to treat the long-range part and the short-
range part with different functionals. In atomic and molec-
ular systems, the Hartree—Fock potential is correct in the
asymptotic limit.*” So one can mix long-range Hartree—
Fock with short-range DFA to give a simple long-range
corrected functional of the form

LC—DFA __ DFA Ir—HF __ plr—DFA DFA
Exc - Ex + (Ex Ex ) + Ec
(17)

In a similar but opposite manner, screened functionals
utilize short-range HF and long-range DFA and are more
widely used in solid-state calculations.** ! There are man
range separated functionals in the literature,*>%89927%8 and
the area continues to gain many followers. Although these
functionals may not improve the thermochemistry, they can
give interesting improvements for other properties such as
excitation energies.99

Fitting: The challenges presented to the exchange—correlation
functional by atomic and molecular systems remain largely
unknown in their depth and complexity. It is very difficult to
determine an accurate form of the exchange—correlation
from first principles. A more practical approach is to take
available experimental information to help determine and
test the functional forms. The easiest way to do this is to
apply some form of parametrization of the functional form
to chosen sets of experimental data. This has proved very
successful in the earliest development of functionals, with
the three parameters in B3LYP fitted to the GI1 set of
experimental data. Becke later extended the idea to 10
parameters in his B97 functional.*>!%° However, for the
problem of exchange—correlation, it is not obvious how
many parameters are needed.'”’ Will many thousands of
parameters be required to describe correlation or perhaps
none? Currently, the answer to this puzzling question is
unknown. Some of the most successful functionals use a
high level of parametrization, but this does not always have a
good theoretical basis. However, this has led to the devel-
opment of many interesting functionals, such as B98,%
VS98,%* and T-HCTH.®® Truhlar’s group have combined
and extended these ideas with parametrization to a large
number of chemically important species to yield some useful
functionals. Their performance with respect to many areas
of chemistry is a significant improvement over the standard
B3LYP functional. The efforts can be best seen in the M06
family of functionals: M06-L, M06, M06-2X, and MO06-
[ 66.78:80,102

Adiabatic connection functionals: The last major advance in
functional development came from the inclusion of a fraction
of Hartree—Fock in the hybrid functional form. The argu-
ment for this arose from the adiabatic connection."®® This
may be a good indication that a deeper understanding and
usage of the adiabatic connection may in fact help to guide
other fruitful ideas in functional construction.

(18)

where W; = (W;|V..|%,) — Jp]. Functionals can be built
using models for the adiabatic connection integrand; the
simplest idea coming from Becke®” was to use a linear model

(19)
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based on the knowledge of the exact W, and WEPA There are
other ideas that could be used, such as building models using
Wo, Wy, Wy, and W/, as carried out by Perdew and co-
workers.'® 1% We ourselves have also developed
functionals'®’ using a form

bA

Mi=at iy

functionals W, Wy, and a chosen point Wlp from an
approximate DFA, to give a highly nonlinear form:

W/
E%CY — WO + 0
Wy, — A, Wy — Wo
ﬂ.P(WO — Wlp)
Wy — AW, — W,
In{1 + S o 0
ip(WO - W/lp)
X 11—
W, — A, Wh — Wo
/’{P(W() - W}_P)

(20)

Some interesting investigations of the exact adiabatic
connection'®®'% have recently been carried out by Teale
et al.""”""" based on the theoretical formulation of Wu and
Yang.''> There is now renewed interest in the use of the
strongly interacting limit, 4 — oo, which can offer a new view
on the exchange—correlation problem that may help to give
more insight on strongly correlated problems." >~

Local hybrids: In general, hybrid functionals have been
found to be a significant improvement over semilocal GGA
type functionals. However, there are some systems where
the fraction of Hartree—Fock exchange needs to be quite
different. Another way of varying the amount of exact
exchange is to use a variable amount at each point in space
by defining a local variant of exact exchange (eq 11)

$io (1) )5 (r) 05 (') ¢,5(r')

d

dr’

(21)

with a local mixing function a,(r), such that a local
functional could be defined akin to B3LYP
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This now places the challenge on the mixing function
a(r), and obviously if one chooses a constant, then normal
hybrid functionals are recovered. Many interesting func-
tionals and ideas have been developed using these

e Functionals involving unoccupied orbitals and eigen-

values:'>*~"** The fifth rung of Jacob’s ladder utilizes the
unoccupied orbitals and eigenvalues. The simplest func-
tional of this form is the MP2 functional

1 oce virt illab 2
EICVH)2 — Z Z L (22)
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It should be pointed out that the eigenvalues used play a key
role. If the eigenvalues on the bottom are from Hartree—
Fock, then this is the MP2 energy expression. However, if
the eigenvalues came from the a local potential, then this
would be akin to the GL2 second-order correlation energy.'>
These two terms are really very different from each other
(sometimes by hundreds of kilocalories/mole in a simple
atomization energy). Unlike MP perturbation theory, GL
perturbation theory can contain a contribution from single
excitations; albeit a relatively minor effect. It has been shown
to introduce improvements in some cases."*° But, for example,
in the breakdown of the GL2 for simple systems,"*" it only
makes matters worse. There have been some quite success-
ful fitted functionals that mix in a MP2/GL2 like correlation
term represented by’

EchPLYP — aE?F + (1 _a)ESGA + bESGA
+ (1—b)E'™

The PT2 term is the MP2 expression, but the eigenvalues
on the bottom of eq 22 come from a hybrid functional.
Several newly developed functionals of the unoccupied
orbitals (from old ideas*®'%"32713%) yge the idea of the
fluctuation dissipation theorem'*>~'#!

1 1 joo 1
ERA = _E/ol/o //r—xfc(rl,rz,iw) dry dr, dw dA
12
(23)

which expresses the ground state correlation energy as an
integral over frequency in an excitation energy type manner
and leads to the random phase approximation (RPA)

BAE-6) e

where Ay, ;= (€; — €,)0,4; + (ia|bj) and B, 3, = (ia|jb). The
RPA correlation energy is given by the difference between
the many body and single particle excitations

RPA __
EC - z Wijg — Aiu, ia
ia

This method is often called direct RPA and there are other
similar methods that differ in their choice of orbitals and
eigenvalues such as full RPA (or RPAX or RPAE). There are
also ideas connecting RPA to coupled cluster formulation,
which can aid in understanding some of the successes and
deficiencies of the method.'** Other developments combine
RPA with range-separationl‘ﬁ”144 or extended formalisms,
such as second-order screened exchange, SOSEX.'#143

ideas.!1* 71 It is also possible, however, that there are
some problems that still need to be fully overcome relat-
ing to a choice of gauge in the development of local hybrid
functionals.'**

We have hopefully given the reader an overview of some of the
major advances in functional development over the past few
years. At the moment, it is not fully clear to us where exactly the
future directions of functionals will be focused: Will it be along
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the directions outlined by the past development of functionals?
Will they include range-separation or screening or fluctuation—
dissipation arguments or hybrid functionals global or local? Will
exact constraints or fitting be the path to future developments? Of
course, the most likely answer is that a knowledge of all of these
possible directions is important to help decide the best path forward,
and clearly, it is important that no pathway is left unexplored in the
quest for improved functionals. This is often done on philosophical
grounds either with fitting parameters or introduction of exact
exchange or, more recently, involving functionals of the unoccupied
orbitals. For example, the introduction of unoccupied orbitals is
often felt to lie outside of DFT. This is especially true in terms of
practical calculations, where it reintroduces the basis set problem of
quantum chemistry. For example, for the He atom, a HF or a normal
DFT calculation with GGA or hybrid functional needs only s basis
functions, whereas the complete description of the wave function
needs all the higher angular momentum functions p, d, f, g h, i...
However, there has been much recent progress in F12 methods that
possibly means there are paths that simplify this problem both
computationally and conceptually.

2.2. Performance with Respect to Chemistry

It is the major, all encompassing, challenge of DFT to
construct a functional, E,.[p], that works for all densities p. In
order to investigate this, a wide range of chemical systems are
used to see how the approximate functional performs. For
example, if we consider the atomization energy of water, the
performance comes down to the subtle energy differences
that are contained in Exc[szo] compared with 2E, [py] and
Exc[Po]- In this review, we comment on some of the many
published works that have tested functionals and use several well-
known chemical data sets to illustrate the performances of many
different functionals. To accomplish this, we evaluated all functionals
using the same geometries and basis sets but also the same densities,
Pp3aLyp- Unless otherwise stated, we have performed B3LYP calcula-
tions with a large basis set (def2-qzvpp'*®). The energy differences are
not computed from self-consistent densities. The key point is that this
effect is really quite minor and much less than the errors between
functionals. It should also be noted that the differences between
T[{¢/**"}] and the Kohn—Sham T,[pgsyp] are very small and
the B3LYP orbitals are used to evaluate T,. However, we wish to
reemphasize the overriding main challenge for DFT always lies in E,.
rather than the secondary effects, which are seen in the relatively
simple search for p. In this context, the assumption is that pp31yp is a
good density and then the challenge is evaluating the functional for it.
The currently used approximations define a small part of functional
space that is easy to investigate with a fixed density. To exemplify this,
consider a self-consistent B3LYP calculation for a particular molecule.
The converged B3LYP energy is calculated from the sum of T, ], V.,
Vo 02E 0.8EEPA 0.72AEP® 0.81EX"" and 0.19EY"N. From
these components, we can also construct the total energy from many
other functionals, such as LDA, BVWN, BLYP, HFLYP, and BHLYP.
If we also calculate other information such as EEBE[pB%YP] and
EXPF[ pparyp], we can then evaluate even more functionals, such as
PBE, PBEOQ, and BPBE. The calculation of a few more integrals with
the B3LYP density matrix (including range-separated HF for several
different range parameters, () allows the investigation of a large
number of the functionals that are currently used in the literature. This
is done without the intensive computation that is required in runn-
ing self-consistent calculations for each functional, but more impor-
tantly, it helps to isolate the challenge of the energy of the exchange—
correlation functional itself. The span of functionals that we calculate

is somewhat representative of currently used functionals, but un-
fortunately is only a minuscule fraction of the full A size of
functional space.

2.2.1. Thermochemical Data Sets. In recent years, the
development of functionals in chemistry has taken a useful and
pragmatic approach. Approximate functionals have been tested
over a wide variety of systems to indicate whether or not the
functional will work well for the given type of problem. One of
the initial challenges is to find high-quality experimental data
with which to compare theoretical results. This approach was first
used by Pople and collaborators, who developed the Gn (n = 1,
2, 3...) wave function-based methods.'*”'*® To aid the develop-
ment of these model chemistries, they used sets of high-quality
experimental data where the heats of formation were known to
values better than 1 kcal/mol. This work started in the 1990s with
the GI and G2 sets'* of mainly small molecules and has sub-
sequently been extended to include larger molecules (generally
organic). In the G3/99 set,">? there are 222 heats of formation, 88
ionization energies, 58 electron affinities, and eight proton affi-
nities. This set has played an important role in the early examina-
tion of functionals, both to fit the parameters of the functional and
also to test the functionals. Other authors have also made extended
databases of experimental data from Boese and Handy***” and
Truhlar’s group.®®">'~'** Zhao and Truhlar also made smaller
subsets that have representative errors of a much larger set (e.g,
AE6 and BH6). Grimme also looked at making sets beyond those
of normal chemistry, including arbitrarily generated molecules,
where high-level quantum chemistry should work well enough to
benchmark the performance of DFT functionals.'>%'%”

2.2.2. Geometries. The prediction of geometries in DFT has
been one of its great successes. This started out with LDA, which
although it does not have a good energetic performance, it does
give a very reasonable performance for geometries. In fact, in
many cases the geometry with LDA is better than with GGA
functionals, even though GGA functionals can give roughly an
order of magnitude improvement in heats of formation. Hybrid
functionals also have a very good performance for many geo-
metric quantities, such that some high level quantum mechanical
model methods (e.g,, Gaussian-4 theory'*®) choose to use op-
timized geometries from DFT. There are several sets of accu-
rately known geometries. In this work, we consider the T-96 set
of Scuseria and co-workers,'> which is of covalently bonded
diatomic molecules and also some simple polyatomic molecules
that due to symmetry have only one degree of freedom (e.g.,
CO,, BCl;, SF). Usually, in order to optimize the geometry one
would carry out self-consistent calculations and evaluate the force
using derivative theory."® However, we want to illustrate again
that the challenge is not in the self-consistency or even the
derivatives of the functional, but is encapsulated in the energy
functional itself. Therefore, for all these molecules we use a def2-
qzvpp basis set and calculate B3LYP densities for several
geometries along the 1-D coordinate around the experimental
geometry. For each of these densities, we then evaluate the
energy of all the different functionals. The minimum energy geo-
metry is determined for each energy functional. We are not
suggesting that this is a general procedure. But in these cases,
it worked extremely well in order to reproduce the fully self-
consistent optimized geometries for each functional. This is hope-
fully a useful illustration of where the challenges for the functional
lie, the main challenge being the energy functional form itself.

2.2.3. Kinetics and Reaction Barriers. Approximate func-
tionals generally perform relatively well for atomization energies
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Table 1. Performance, in Terms of Mean Absolute Errors (MAE) of a Wide Range of Functionals on Thermochemistry
(G3 set'™), Barriers (HTBH42'®' and NHTB38"*"), Geometries (T96'*’), Hydrogen Bonding'** and Polarizabilities'”® all Evaluated

Post-B3LYP and Post-PBE (see the text)

post-B3LYP post-PBE

G3 barriers- T96 H bond- Aiso G3 barriers- T96 H bond- Uiso

functional (kcal/mol) (kcal/mol) (ao) (kcal/mol) (au) (kcal/mol) (kcal/mol) (ao) (kcal/mol) (au)
LDA 7224 14.36 0.0107 3.02 0.78 73.08 14.95 0.0114 3.19 0.83

GGA and Meta-GGA Functionals
BLYP 6.64 7.37 0.0205 1.46 0.79 6.77 7.58 0.0216 1.49 0.83
HCTH 5.59 4.15 0.0119 2.22 048 S5.51 4.31 0.0126 2.25 0.44
HCTH407 5.72 4.69 0.0107 1.05 0.50 6.20 4.84 0.0115 1.10 0.48
PBE 15.99 8.29 0.0148 1.24 0.63 16.22 8.58 0.0157 1.32 0.66
BP86 15.71 8.49 0.0158 1.39 0.66 16.11 8.76 0.0169 1.43 0.67
BPBE 7.55 6.81 0.0155 1.67 0.53 7.81 7.08 0.0167 1.71 0.51
OLYP 5.22 5.36 0.0142 221 0.53 5.39 §.51 0.0152 2.24 0.53
OPBE 8.86 521 0.0121 2.55 0.31 9.48 5.38 0.0132 2.59 0.30
TPSS 7.85 8.03 0.0123 1.16 0.44 8.04 8.01 0.0131 1.20 0.43
Mo06-L 5.87 3.82 0.0056 0.58 0.40 7.67 3.72 0.0060 0.60 0.33
Hybrid Functionals
TPSSh 6.03 6.45 0.0082 0.98 0.30 6.05 6.19 0.0090 0.97 0.27
B3LYP 4.28 4.50 0.0097 1.01 0.37 4.38 4.22 0.0106 0.98 0.36
PBEO 6.37 4.11 0.0089 0.76 0.21 6.23 3.76 0.0096 0.71 0.19
B97—-1 3.90 3.88 0.0093 0.7§ 0.28 3.85 3.61 0.0100 0.67 0.26
B97-2 4.31 2.79 0.0087 0.97 0.19 4.49 2.58 0.0093 1.07 0.19
B97-3 3.70 222 0.0087 0.92 0.26 3.96 2.00 0.009S 1.07 0.24
Mo6 4.78 2.03 0.0088 0.47 0.39 5.48 1.79 0.0093 0.48 0.33
Mo06-2X 3.34 1.37 0.0110 0.34 0.35 3.67 1.59 0.0123 0.60 0.34
MO06-HF 6.26 3.14 0.0167 0.88 0.73 8.13 4.23 0.0185 1.57 0.74
HF 132.38 15.12 0.0277 3.18 1.01 134.36 17.78 0.0307 4.11 1.03
HFLYP 35.39 9.18 0.0423 1.13 1.36 37.38 11.52 0.0444 1.87 1.55
Range-Separated Functionals

CAMB3LYP 4.04 2.51 0.0119 0.69 0.23 4.22 2.40 0.0132 0.88 0.22
LCBLYP 1691 3.73 0.0169 0.90 0.31 16.40 344 0.0182 0.90 0.31
rCAMB3LYP 5.50 2.76 0.0225 0.78 0.37 6.04 3.57 0.0240 1.20 0.42
LC-PBE 16.69 3.07 0.024S5 0.75 0.53 16.34 3.50 0.0271 1.16 0.62
HSE 4.37 343 0.0082 0.77 0.21 4.50 3.09 0.0093 0.77 0.19

but poorly for reaction barrier heights. This is true even for the
simplest chemical reaction H + H, — H, + H, for which both
experimental data and high-level calculations give a barrier of
about 9.6 kcal/mol. However, functionals such as LDA and GGA
can underestimate this barrier by 4—8 kcal/mol, a large system-
atic error. Hartree—Fock, on the other hand, overestimates the
reaction barrier by around 10 kcal/mol. This illustrates a potential
advantage of hybrid functionals, which mix together parts (and
also errors) from GGA with HF and give improved results.
However, despite this initial promise, hybrid functionals still
underestimate the H + H, reaction barrier by around 3 keal/mol.
In terms of reaction rates, these functionals are all disastrous.
Excellent work from Truhlar’s group has investigated and addres-
sed the problem of reaction barriers with some earlier functionals
such as MPW1K (where the K stands for kinetics).”* These tend
to have a larger percent of exact exchange (around 50%). More
recent work reported some important sets of hydrogen transfer
barrier heights, HTBH42,'%! and non-hydrogen transfer barrier
heights, NHTB38.">' Truhlar also presented some functionals

with an all around good performance, where the forms were
optimized to give both thermochemistry and kinetics.'®
2.2.4.Hydrogen Bonding. Hydrogen bonds are of the order
1—10kcal/mol. They are much weaker than normal covalent and
ionic bonds yet are still much stronger that the weak dispersion and
van der Waals interactions found between nonpolar closed shell
fragments (discussed later). The case of hydrogen bonds, where
there is reasonable overlap of electron density as well as some
electrostatic interactions between the fragments, has been a difficult
challenge for functionals.">* A wide difference between functionals
that perform similarly on thermochemistry and geometries exists.
2.2.5. Other Sets. There are many other sets in the literature
that offer a different challenge to functionals such as those for
inorganic chemistry and transition metals. For the main periodic
group and organic chemistry, there seems to be an improvement
in going from semilocal functionals GGA to meta-GGA to hybrid
functionals. With the inclusion of barriers, there is a definite push
to increase the amount of Hartree—Fock exchange. For large
parts of inorganic chemistry and some of the energy differences
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in transition-metal chemistry, it seems that the trend is reversed
and functionals with smaller amounts of exchange perform
better, 155163165

2.2.6. Response Properties. The calculation of how a small
perturbation can affect the ground-state energy allows one to
calculate many very important properties with the use of linear
response theory. For example, the dipole polarizability is given by
the second derivative of the energy with respect to an electric
field F,, o, = 3°E/dF,”. Again, the performance of DFT has been
evaluated for several standard sets related to response properties.
The polarizability illustrates one of the basic problems of
functionals: GGAs tend to overestimate the polarizability of
standard small molecules, and this is improved by hybrid func-
tionals, where generally a good performance is achieved. The
overestimation observed with small molecules can be empha-
sized by examining the performance for chains or polymers of
increasing length. This has been seen in one of the simplest
possible chains (H,),,"*°~"*®where the longitudinal polarizabil-
ity becomes increasingly overestimated with LDA/GGA func-
tionals and is largely corrected by HF and some hybrid functionals.
Similar effects are also seen in long-distance charge-transfer
excitations,l707 172 where the long-range error of LDA/GGA is seen
with an incorrect missing 1/R behavior of the excitation energy. In
all cases, LDA/GGA perform the worst, whereas hybrids, especially
the newer range-separated hybrids, perform much better. There are
other response properties where the opposite trend is seen. For
example, in magnetic properties, such as NMR shielding
constants,'”>~"”” the inclusion of exchange in hybrid functionals
makes the performance worse. The exact nature of this reason is
encapsulated in the type of response these energy expressions have
to a magnetic field, where the Hartree—Fock expression has possibly
a much too exaggerated response.

As an illustration of some of these properties, we have included the
performance of functionals for the dipole polarizability calculated by
finite difference using the B3LYP density (Table 1). Even in this
derivative property, the density and self-consistency are very minor
issues compared to the mathematical form of the energy functional.

2.2.7. Performance of Density Functional Approxima-
tions. The results in Table 1 demonstrate the performance for a
wide range of properties of several illustrative functionals. LDA
does not perform very well for many of the energetic differences
that are important in chemistry, though it does surprisingly well
for the geometries. At the GGA/meta-GGA level there is a
marked improvement over LDA in terms of energetics, showing
the importance of gradient corrections for many chemistry
applications. Similarly to LDA, GGA/meta-GGA functionals
tend to underestimate reaction barriers and overestimate polar-
izabilities. For most of the GGA/meta-GGA functionals, the
geometries are actually worse than LDA with one notable
exception to this being the M06-L functional. For the smaller
energy differences seen in the hydrogen bonding and weak
interaction set, there is quite a wide variance among the different
GGAs and meta-GGAs. The inclusion of Hartree—Fock ex-
change in hybrid and range-separated functionals allows a much
better description of a large part of the chemistry encapsulated in
these assessments. This is particularly evident for the more recent
functionals, such as M06-2X, which exhibit an excellent all
around performance. Inclusion of some physically and theoreti-
cally motivated corrections in functionals, such as rtCAMB3LYP
and LC-BLYP, seems to come at the cost of a slightly worse
description of chemistry in these testing sets, even though they
may be important for chemical ideas outside of these. Also in

Table 1 we show the performance not just post-B3LYP but also
post-PBE (E°™[pgayp] and E°**[pppg]). The similarity be-
tween the two is quite striking and helps us to understand the
true challenge of building a functional. The key is the energy
expression. Other considerations, such as which density is used,
are definitely secondary considerations.

2.3. Dispersion and van der Waals Forces

Is DFT capable of giving dispersion forces? The answer from
one point of view is, of course, yes. The Hohenberg—Kohn
theorems tells us that if we know the correct functional and
minimize it we would then obtain the exact ground state energy
and density of these systems. So it is not a problem for the exact
theory, although it still remains a large challenge for approximate
functionals. This is clear, as local and semilocal functionals
cannot hope to capture the asymptotic 1/R® behavior'”*'*°
(one can clearly see that for frozen monomer densities a GGA
functional will incorrectly have no dependence on the intermono-
mer distance, leaving the interaction solely to the Coulomb terms.
This does not capture the 1 /R® behavior). How this affects
molecules where there is substantial overlap of the density is
unknown but it is most definitely not a clear point from which to
start. There is a clear correlation of the inability to describe van der
Waals with the behavior of a GGA exchange functional in the region
of small density and large reduced density gradient, x.'®" Possibly
the understanding of dispersion needs to be traced to some more
basic (or mathematical) flaw of the functional. However, the failure
of LDA and GGA to give the correct energy for two fixed densities at
long distance has led to some simple corrections.

Before discussing the popular approaches to tackling van der
Waals interactions, it is pertinent to illustrate a point that is
commonly known but perhaps slightly misinterpreted. On the
basis of the Hellmann—Feynman theorem, the origin of the van
der Waals long-range attraction can be clearly attributed to the
accumulation of electron density between the two closed-shell
systems.'® This then seems to state that the challenge is in the
description of the density. However, the challenge for approx-
imate functionals can actually be quite different from that, as
illustrated in Figure 1. Here, for Ar, around the equilibrium bond
distance, we have two approximate functionals with completely
different behaviors; PBE massively overbinds and BLYP is purely
repulsive. Surely it is to be expected that they should have very
different densities if van der Waals is related to the density. What
we can see from a deeper consideration of Figure 1 is that this is
not due to any difference in the density and is solely a property of
the energy functionals themselves.

2.3.1. C¢/R® Corrections and Other Simple Corrections.
It has been long noted that local density functionals (e.g., LDA or
GGA) cannot describe the long-range behavior of the van der
Waals interaction and will therefore miss the correct attractive
1/R® behavior. This observation stimulated ideas to add on
empirical pairwise corrections,'®>'® with the form
Co

6
R;

E(R) = ¥ FER(Ry) (25)

ij

which are functionals of the nuclear geometry and not purely of
the density. This was also extended to include higher-order cor-
rections
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FE(Ry) (26)
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Figure 1. The role of the density in van der Waals forces: Binding curves
of Ar, with several different energy functionals evaluated using two
different densities, on the left the PBE density and on the right the BLYP
density. There is very little observable difference; thus, the differing
behavior of the functionals, in this region of the binding curve, is not
attributable to their different densities but only the energies that
they give.

One of the major questions in the application of these methods is
the origin of the C¢ coefficients. They may be derived either from
experimental information or calculated using ab initio methods.

There are many tabulated Cg coefficients that together with an
appropriate damping function allow the application of the above
equations to a large range of interesting chemistry applications.
However, Cs coefficients can vary c0n51derably depending on the
chemical environment (for example sp” versus sp> bonded). It is
unclear how one has to assign the bonding environment to apply
the correct C4 coefficient. Grimme has now extended this idea to
cover the whole periodic table and to cover different bonding
situations.'®> These functionals are often denoted by the name
DFT-D.

Becke and Johnson'®”~'** have developed nonempirical
functionals for the dispersion coefficients based on the dipole
moment of the exact exchange hole. For example

aiaj<M2>i<M2>j
aM?); + a{M?);

Col =

where the atomic expectation values of the multipole operators
are given in terms of a functional of the density and orbitals

o = ¥ / wi(£) po (o)

! / / / , :
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Another practical idea is to capture the dispersion interaction by
the addition of a suitably determined pseudopotential.'*>'**
These are atom-centered potentials (developed for a few atom
types) which combine a long-range weakly attractive potential
with a shorter range weakly repulsive potential.

2.3.2. Explicit van der Waals Functionals. One of the first
ideas in the development of explicit functionals came from
explicitly considering the density of two separate fragments that

are weakly interacting'”

pi1(r1) py(r2) 1

EAL
* 4(4m) 3/2/‘" /VZ\/Pl(rl ) + Vo) o =5l

However, this has the unattractive feature that we have to
explicitly divide space into two species, which a priori are known
to be weakly interacting. For example, what would one do if
intramolecular van der Waals interactions are of interest, where
space is not readily divided along the lines of the above equation?
More recent ideas by Dion et al.'*® have reignited interest in this
area with functionals that are exciting and promising. They
devised a nonlocal van der Waals correlation functional

#if o

% 7 [Carw(ab) T(v(a), o), v (a), (1)) da db

drl dl'z

) p(r) dr df (27)

where

(1, 1‘/) = c[)(q(r,r/)), q(r) = q(p(r), Vp(r))

but it can be expressed in a more compact manner using

= [ X 11— (2187 S ) S)
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There has been some very efficient implementation of these
functionals by Soler and co-workers."*”

Other ideas along these lines have led to similar functionals, which
are being further developed to make them simpler and better'*® %

(! K(r)x(r’)
E; :64312// Nwo® + wo@e—r]

It is also a difficult task to find the best exchange and correlation
functionals to go with the nonlocal piece that can describe the normal
thermochemistry and geometries, as well as the weakly interacting
systems.

Overall, there has been much success using some relatively
new methods for treating dispersion interactions. For some of the
prototypical examples, the prediction of binding in van der Waals
complexes and biologically important complexes™" is no longer
outside the realm of DFT-based calculations. The refinement and
a deeper understanding of these ideas will lead to developments
and greater success in an increasing number of applications in
important noncovalent interactions in both chemistry and biology.

3.CONSTRUCTING APPROXIMATE FUNCTIONALS AND
MINIMIZING THE TOTAL ENERGY

In this section, we will explore further ways to progress the
development of functionals. We have seen the advances that can
be made in chemistry by considering the performance over
greater numbers of chemical systems, including the addition of
van der Waals. However, it is important to address the particularly
challenging problem of exchange—correlation from other angles
as well. To begin, let us consider some of the mathematical
formulations that have underlined the exchange—correlation
functional, starting from the simplest Kohn—Sham definition in
terms of kinetic and electron—electron repulsion contributions

Exlp] = (T[p] — Tilp]) + (Veelp] —Jlp]) (28)

dx.doi.org/10.1021/cr200107z [Chem. Rev. 2012, 112, 289-320
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Here T[] denotes the kinetic energy of noninteracting electrons
that have the same density as that of the physical system. It includes
all the many-body contributions to both the kinetic energy and the
electron—electron interaction terms. Probably the more impor-
tant of the two is the electron—electron interaction term V., =
¥;5/(1/r;). This led to the development of the adiabatic connection.

3.1. Adiabatic Connection
In the adiabatic connection'”*** of Langreth and Perdew,'® the
key idea is that the interaction between electrons is allowed to vary

A
V=YY= (29)
i>j rij
with a family of Hamiltonians defined by
1 ) A
Hy= =3 X Vi + Youlm) + X~ (30)

i>j rij

H,¥, = E,V¥; (31)

and minimizing wave function W; such that p;(r) = p(r) for all A.
It is then easy to show that the exchange—correlation energy can be
expressed as an integral over the coupling constant, 4, going from
the noninteracting Kohn—Sham system at A = 0 to the real physical
system at A = 1.

Edlel = [ (32)

where J[p] + W, = (‘PA|(3V'26/3/1)|‘P/1> = <IPA|VeeLIP/1>~ There are

some important properties of W that are known;>>'**2%*2%*

WO [P] = Ex [IPO}
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where the scaled density is defined as p;(r) = A*p(Ar). The
adiabatic connection is also often written at the level of the
exchange—correlation hole

. A /
oo [ [ [P
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Modeling W) or pic(r,r') gives rise to different functional approx-
imations. It is also possible to use other connections beyond the
simple linear form of eq 29, such as in the generalized adiabatic
connection,”® which also offers a direct link to the use of range-
separated interactions in functional construction.”*””

3.2. Methods for Minimizing Energy Functionals

In the ground-state energy functional, eq 3, the Kohn—Sham
kinetic energy is expressed as an explicit functional of the one-
electron orbitals of the noninteracting reference system. The
noninteracting Kohn—Sham first-order reduced density matrix
of the reference system is given by

p,(r,1) = Y nigd, (X) 7, (r) (33)

io

and the physical density p(r) is equal to the Kohn—Sham density
ps(r), which is the diagonal element of p (r/,r)

p(r) = p,(1) = p(x) = ¥ niody, (r) 43, (x) (34)

10
Since T is an implicit functional of electron density, it is
impractical to just use the electron density as the basic computa-
tional variable. The practical approach for obtajning the mini-
mum was originally developed by Kohn and Sham,'* where the
orbitals {|¢;)} are the eigenstates of one-electron local poten-

tials vS (r)

<—;v2 + 07 (r)> 0,5) = €iold;) (35)

The KS potential v (r) is related to the exchange—correlation
potential vi(r)

vy (r) = vi(r) + vy(r) + v(r) (36)
where
0 =5 b @)

For E,. that is an explicit functional of the electron density,
either a local functional such as LDA, a semilocal functional
such as GGA, or a nonlocal functional, 0E,.[p]/0p,(r) can be
directly evaluated and the energy minimization can thus be
achieved by the self-consistent solution of the KS equations,
egs 35 and 36.

Going beyond the limitations of current local or semilocal
approximations, a promising approach for the systematic devel-
opment of exchange—correlation functionals is based on implicit
density functionals. Here the energy functional has an explicit
dependence on the reference single-electron orbitals and
orbital energies E.[{¢;€}], as in T,[{¢;}]. The prototypical
example of an implicit density functional is that of exact
exchange, EXX, which takes the form of the Hartree—Fock
energy expression but is evaluated using KS orbitals. While
EXX itself is a rather poor approximation of E,, compatible
correlation functionals of orbitals such as those derived from
many-body perturbation theory**®'*"?%7 or random ?hase
approximation'*® or constructed using exchange holes''* or
from the adiabatic construction'®” clearly demonstrate the
promise of this approach. More complicated functional forms
also offer new challenges for minimizing the energy.

One way to carry out energy minimization with orbital func-
tionals is the optimized effective potential (OEP) method.****%
This follows the original KS equations for the orbitals as
eigenstates of a local potential v,(r). Now v,.(r) can be formally
expressed through the following chain rule

N1 OE8) 60, (F) 0v7()
>/ 54 () 32 () Bpy 1)

which can be simplified to obtain the OEP integral equation**®

N SElo)]
Z / qu,(r/) |:Vfc(r/) *ﬁ 64). [Z.]/)]} Gigs(r,r) ¢i0(r) =0

ve(r) =

df &’ (38)
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(39)
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where the Kohn—Sham Green’s function is given by

i#i €0~ €jo

The basis set expansion for the exchange—correlation poten-
tial v3.(r) was first used in conjunction with eq 39 in success-
ful implementations of finite-basis set OEP calculations for
molecules.*'®*'" An alternative view of OEP is to take the
variable of the optimization as the local potential v¢(r), since
both the orbitals and orbital energies {q)ja,ejg} are functional of
v¢(r). The ground-state energy is just given by the following
minimum

Ey. = min El{4),)]

The theoretical foundation for the potential-centric view of
the DFT has been rlgorously established as the potential
functional theory (PFT).>! Here two versions of the PET
using the external potential and the one-electron potential
were shown to parallel the results of Hohenberg—Kohn and
Kohn—Sham. Calculation of OEP by minimization of an
object functional was done by Colle and Nesbet;*'* their
object functional was not the total energy but was con-
structed as a quadratic functional consistent with the linear-
ized OEP equations eq 39 and an additional constraint of the
HOMO eigenvalue. The direct minimization of the energy
over all possible potentials can be carried out effectively by
the direct optimization of the coefficients {b,} in the basis
set expansion213

vd(r) = v(r) + v§(r) + Z by g (r) (40)

where v(r) is the external potential due to the nuclei and v (r) is a
fixed reference potential that can be used to describe the correct
long-range behavior. The exact analytic derivatives JE/ oby and
approximate second derivatives have been derived to allow
efficient optimization.”’**'* The conditions of the vanishing
first-order energy gradients also lead to the natural algebraic
equations for finite basis set formulation of the OEP,*'* which is
different from the direct projection of the OEP equations, eq 39,
with a finite basis set expansion of the exchange—correlation
potential’’®*'" and other methods.*'>*'® However, with the
introduction of finite basis sets for orbitals, the ill-posed inverse
nature of the OEP manifests itself with the generation of
nonphysical energies and potentials.”'”*'® A successful determi-
nation of OEPs relies on a choice of balanced orbital and
potential basis sets.”'**?° In addition, there exists an efficient
method for determining physically meaningful OEPs for arbi-
trary orbital and potential basis sets with a regularization
approach 221,220

Instead of determining the local OEP, one can perform the
following optimization for the ground-state energy using the
orbitals as the optimization variables,

ELS = min E[{¢;, ]
{40}

For functionals of py(r/,r), such as EXX, one obtains the
Generalized Kohn—Sham (GKS) equations,”** which are
also called Hartree—Fock—Kohn—Sham equations,”*® with
a nonlocal potential vg ONL(e ') = 02 (er) + vy(r) + v(r) for

Table 2. OEP versus GKS: Mean Absolute Error for Several
Molecular Sets Is Shown for the OEP and GKS Minimizations
of Three Different Approximate Functionals, B3LYP, MCY2,
and HF*

B3LYP MCY2 HF

property GKS OEP GKS OEP GKS  OEP

atom E/kcal mol ' 2.63  2.63 348 347 10100  101.19
93 set/kcalmol ™' 330 321 226 216 74.00 75.15
barrier/kcal mol ' 4.65 458 193 186 12.91 14.14
R./au 0.0042 0.0041 0.0049 0.0050  0.0165  0.0172
a/au 0.2967 0.2953 02053 02020 09107  0.9979

“ Differences in minimizing an energy expression using either OEP or
GKS are clearly minor compared with changing functional.

the orbitals:

<_2V2 + 02N (r, >> [0i) = €l i) (41)

For example, for the most cited functional in the literature, B3LYP,
when the calculation is carried out to minimize the energy as is
routinely done, it will not fall within the regime of Kohn—Sham
theory, as the potential in the minimizing equation is nonlocal. It
has been carried out within the GKS framework.

There is one scenario where the KS-OEP approach appears
to be the only computational approach for minimization of the
energy. This is when the energy functional is E[{¢;s,€j5} ], also
dependent on the eigenvalues of the one-electron orbitals,
such as in the RPA and MP2 correlation functionals. Since
{¢j0€j0) are functional of v{(r), the OEP approach is well-
defin d 131,206,207

We feel it is important to point out that for a functional such as
B3LYP, in terms of the total energy,224 there is very little to
choose between GKS and OEP, even in the case of a well-
regularized (or balanced basis set description) potential. The two
methods are not identical but they are very similar!

All calculations in Table 2 [atomic energies H—Ne, 93 set of
energies, BH42 set of barriers, geometries of small molecules. 225
and a small set of isotropic dipole polarizabilities calculated by
finite difference (AF = 0.001 au)] are carried out using a
modified version of the NWChem package®*® with a pVTZ basis
set for both the orbital and potential basis sets . We can see from
the results that the OEP and GKS calculations are not identical
(as would happen with a much larger potential basis set in an
unregularized calculation), but they are very similar. The OEP
total energy must be higher, as it has an extra constraint on top of
the GKS calculation, that is, that the potential in the KS equation,
v¢ (r), is local. However, this has a minor effect on total energies
and energy differences. The effects on the molecules and the pro-
perties shown here are much smaller than the effects of a change
in a functional. Although it is appealing to run an OEP(B3LYP)
calculation to place the most famous functional more firmly in
the theoretical setting of Kohn—Sham theory, there do not
appear to be any practical advantages. The extra computational
effort to run the OEP calculation means that we cannot see much
reason at all for running OEP calculations. There was one property
where the use of OEP seemed to offer some practical advantages,
namely, in the calculation of magnetic properties.”””>*" This no
doubt comes down to the uncoupled manner in which the calculation
is carried out and to the use of the OEP rather than GKS eigenvalues.

dx.doi.org/10.1021/cr200107z [Chem. Rev. 2012, 112, 289-320
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3.3. Kohn—Sham and Generalized Kohn—Sham Eigenvalues

Eigenvalues play an important role in density functional
theory without completely fulfilling their full potential. This is
in part due to the inconsistencies of approximate functionals
currently used in the literature. However, there is some access to
the exact Kohn—Sham orbitals and eigenvalues also from a
potential-driven calculation. From high-level quantum chemical
methods (or even from experiments), we can obtain accurate
densities, and in the true spirit of Kohn—Sham, we can find the
v,(r) that gives it back by minimizing the noninteracting kinetic
energy, as was first done in a practical scheme by Zhao et al.*** as
well as similar schemes.””****7%3% In the work by Wu and
Yang,'"? this is done by maximizing the functional

W= QUIT T [ 00,00 - o) dr
(42)

with respect to the Kohn—Sham potential v. Here v{ plays the
role of a Lagrange multiplier to satisfy the constraint that the
Kohn—Sham density is the same as the highly accurate input
density, piy(r). This density usually comes from a high-quality ab
initio calculation, such as MP2 or CCSD, or it could even be a
density as measured by experiment. Once v{(r) is determined
from this density, we can get the exact Kohn—Sham potential
and also the exact Kohn—Sham orbitals and the exact Kohn—
Sham eigenvalues.

We can also obtain approximate eigenvalues from calculations
with approximate functionals, for example, from LDA or GGA
functionals

OEZAp]

loa

)%(r) = €iodyo(r)

(43)

This raises the question how similar are these eigenvalues to the
exact ones? Note that Kohn—Sham eigenvalues must have come
from a potential, v{ (r), that is multiplicative. This is the case for
LDA and GGA, where the exchange —correlation is a functional
of the density. However, for orbital functionals, the direct
minimization carried out in a standard Hartree—Fock calculation
(or a B3LYP calculation)

1 OEEMP ¢,
<2V2 + Vext(r) + V](I') + M) ‘Pia(r) = eng¢iU(r)

(44)

has a potential v,(r,r’) that is nonmultiplicative and is not of the
Kohn—Sham type but rather of a generalized Kohn—Sham
(GKS) nature. The €“*° are generally very different from the
Kohn—Sham €. A rather straightforward rearrangement of the
above equation gives

5 = oyl =3V + ) + o) + 2 Ly
or more generally

€ = (0 [Herl00) (45)
and also for Kohn—Sham eigenvalues

€0 = (0,6|H! 0,5 (46)

Table 3. Orbitals and Eigenvalues Originating from Different
Methods: Eigenvalues (in eV) for the Fluorine Atom Calcu-
lated Using (@¢|H.q|¢¢) with Different Combinations of Hg

and {¢jg} “

€HOMO = <<PHOM0|Heff|¢HOMo> €HoMO — €LUMO

Heg PBLYP $psLyr  $rc—BLyr  PBLyr $B3Lyp Prc—BLYP
LDA —10.01 —9.86 —-10.19 —0.06 —0.10 —0.09
BLYP —10.13  —9.97 —10.30 —0.84 —0.87 —0.85
PBE —10.11 —-9.96 —1028 —090 —0.94 —0.93
B3LYP —12.19 —12.04 —1235 —471 —4.69 —4.69
CAM-B3LYP —1420 —14.06 —1437 —856 —851 —852
LC-BLYP —14.56 —1441 —14.74 —945 —944 —9.44
rCAM-B3LYP —1628 —16.14 —1645 —12.75-12.68 —12.70
HF —18.81 —18.70 —1895 —20.85—-20.56 —20.64

“The numbers corresponding to true eigenvalues (when ¢ and H.g
come from the same method) are bold. The different methods give vastly
different eigenvalues; however, the orbitals themselves can be quite
similar and the only factor of importance is the nature of H.g.

Here we express the eigenvalues in terms of expectation values of
the one-electron operators. An illustration of the importance of
this understanding is given in Table 3.

3.3.1. Janak’s Theorem. If fractional occupations are in-
cluded in a KS or a GKS scheme such that the density is given by

p(r) = 3 nioldyy (0l

io

where the 1; can be fractional, then we can evaluate the modified
Kohn—Sham energy by minimizing

Bt = 3 mul 110, + [ veae) p(6)
+ Jlel + Ex[p] (47)

and we can take derivatives of the above from the usual
Kohn—Sham starting point {n,;} = 1,0 to simply find that*3¢

9E(p]
Onig

= €4 (48)

This constitutes the Janak theorem. It is also easy to extend
Janak’s result to orbital functionals and similarly find*>”

Y e
anio Eia (49)
Before we consider how the eigenvalues agree with electron
removal and addition, let us consider a few implications. First, are
they something that only comes from a full self-consistent
calculation, or can we view them in a different manner? In
Table 3 we want to highlight the implication of eqs 45 and 46,
which is that “eigenvalues” can often be calculated in a much
simpler manner. As we have seen previously, it is not actually a
challenge for the density (or the orbitals) but again more a
challenge for the energy expression (in this case the derivative
Heq¢is]). The HOMO—LUMO gap here is insensitive to the
type of orbitals; it only depends on the H.g The physical
meaning of KS and GKS eigenvalues and their relation to
experimental observables will be further discussed in (Section
4.14).
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4. INSIGHT INTO LARGE SYSTEMATIC ERRORS OF
FUNCTIONALS

In section 2 we have seen that DFT has enjoyed much success
using approximate functionals. One path to progress is to refine
the performance of DFT in areas where it is already quite
successful (e.g., improving G3 MAE from 4 kcal/mol toward a
chemical accuracy of 1 kcal/ mol). Although the field of DFT is
now reaching maturity due to such success, it is critical and
perhaps even more important to understand the errors. This
realization can help to establish a philosophically different
approach to functional construction. By definition, the errors
in DFT all arise from the approximate nature of the functionals
that are used in the calculations. Understanding the true nature
and root cause of these errors in the functional approximation
can offer insight to help improve the physics and chemistry
contained in newer functionals. We now discuss the principal
large systematic errors of functionals beyond the average errors
seen in the near-equilibrium geometries of the G3 set and the
slightly larger errors found in reaction barriers due to molecules
in their transitions states. We believe that understanding and
eradicating the basic errors of currently used approximations is
key for the advancement of DFT.

4.1. Stretched H3 and Delocalization Error

What better place to start than the simplest molecule in
chemistry: H3. This molecule with one electron, that should be
trivial to solve, is in fact one of those problems whose failure
could well indicate that something is fundamentally flawed with
currently used functionals (Figure 2). The size of the failure is
also worrying. In the quest for average errors of 1 kcal/mol, large
errors of 50—60 kcal/mol are found for the dissociation of Hj
with all GGA type functionals. This is not solely a problem
restricted to just the prototypical one electron system Hj, but
can also be clearly seen in many other systems. Even in other
stretched odd electron systems such as He," and (H,0),",***
they all show massive errors on stretching. Rather than using the
fact that the chemistry in the G3 set is hopefully different in
nature to the stretching of molecules, let us instead consider it in
more detail in an attempt to shed some light on the problem.
Hence, we will now focus on the functional rather than the
chemistry.

4.1.1. Self-Interaction. The classic way of viewing the
problem of Hj is to consider it a one-electron system. Any
error made is because the electron interacts with itself in an
unphysical manner, a problem well-known in the literature as the
self-interaction error (SIE).>**~>** One way to correct it would
be to include the full amount of exact Hartree—Fock exchange,
since this would exactly cancel the Coulomb term in any one
electron system. Perdew and Zunger”” suggested a correction
term that removes all the one-electron self-interaction terms
present in any approximate functional

Ellp] = Exclp] = | X Jlpi) 0] + Ex[pig) 0] (50)

This would have no effect on the exact functional. It has been
applied to LDA and GGA functionals and the results give some
interesting properties. First, the correction unfortunately means
that the functional is no longer of a Kohn—Sham nature, as the
potential is now orbital-dependent. However, the energy can be
directly minimized allowing for rotations of the occupied
orbitals.***~%*° Second, the self-interaction corrected functionals
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Figure 2. Binding energy curves of stretched H3, calculated with LDA,
B3LYP, and exact (HF). After 10 A the «x axis changes to a logarithmic
scale and the final point at infinity is from an explicitly fractional charge
calculation (2 x H['/,a,0]).

often perform worse than the parent functionals for the standard
tests, such as thermochemistry and geometries. This situation has
stimulated further work along these lines with attempts to scale
down the correction.>****/

The essence of self-interaction can also be understood from
the behavior of the energy of one electron. In this case the exact
exchange—correlation functional is known, for O< N< 1 E, [p] =
—J[p]. However, the behavior of the energy for one-electron
systems can be more clearly seen if we consider the homogeneity
scaling248 of functionals between 0 and 1 electrons, p; = qp,
0<g< 1.**?*With a knowledge of the explicit forms of the T, V.,
and J functionals and also the exact behavior of the total energy, a
scaling relation for the exact exchange—correlation functional
can be easily found,

Exclo,] = qEx[o] + q(1—q)J[p] (s1)

This equation reveals that there are two parts to the correction of
E,.[p]: alinear correction and a quadratic correction to counter-
act the behavior of the Coulomb term. In this case, the Coulomb
term for one electron is not removed, rather, it is corrected to
become a linear interpolation between the integers as well as the
exchange, and of course, in up to one-electron systems the
exchange and Coulomb cancel exactly. There is much to be
understood even from systems with only one electron. In density
functional theory, which is based on the average of all electrons,
one-electron densities are not very different from other densities.
They offer some illuminating challenges which, as always, transate
into a challenge for the exchange—correlation functional.

4.1.2. Many-Electron Self-Interaction Error. The concept
of self-interaction is simplest and clearest in the one-electron
case. However, the effects can also be seen in many-electron
systems. In such cases, are there, in fact, effects present other than
those arising just from each electron interacting with itself? An
answer to this question can be obtained by looking in functional
space. There are approximate functionals upon which the Perdew—
Zunger correction eq S0 has no effect. These functionals are
correct for one-electron systems. Some examples are the adia-
batic connection functional MCY2'%” or the position-dependent
exact-exchange functional B0S."'” The key point is that these
functionals are a long way from being correct for the self-
interaction problems of systems with more than one electron,

dx.doi.org/10.1021/cr200107z [Chem. Rev. 2012, 112, 289-320
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and in such cases, the Perdew—Zunger correction cannot possibly
help. This observation helped lead to the concept of “many-
electron self-interaction error”.'*”**7?**~25! The idea that all the
error is due to electrons interacting with themselves is very hard to
formalize mathematically for many electrons and is a difficult way to
view the problem. We believe that a better understanding comes
from the term “delocalization error”, because it better captures the
physical bias of the functionals commonly used in the literature.*>
We will discuss the concept of delocalization error in (section 4.1.6),
after introducing fractional charges and associated exact conditions.

4.1.3. Fractional Charges. Having identified some chemical
systems where functionals exhibit a poor performance, it is
important to attempt to move from what we term chemical
space (the molecules) to functional space. In other words, we
need to identify the real underlying cause of the failure in terms of
the mathematical nature of the functional. Although it is useful to
identify a system or set of systems where the functional exhibits
errors, it is more beneficial to have a deeper understanding of the
underlying cause of those errors. Otherwise, we remain at the
level of only seeing an error in Hj and then a similar error in
(Ceo)2" and again a similar error in the band gap of solid
diamond, but without a true understanding of the connection
between them. However, it should be acknowledged that recog-
nition of the error helps and is the first step to understanding the
problem inherent to the functional that gives rise to that error.

The question now arises, what further can we learn from
infinitely stretched H3, other than it is a system where LDA/
GGA:s fail? One main advantage of DFT is that unlike ab initio
quantum chemistry, which is based on the wave function in the
many-dimensional Hilbert space, we can look in real space at
orbitals and densities and therefore at the functional that acts
upon these real space objects. Although the complexity of the
functional is unknown, some understanding can be gained from
looking at the real space picture of what is happening in a
particular molecular system. For example, at the infinite limit of
stretched H3, the electron density is spread out over both
centers, and there is half an electron on each proton.*** In this
infinite limit, we really have two fractional systems, two HY?*
atoms, and it is evident that DFT struggles to give the correct
energy for this fractional system.

On the basis of the seminal work of Perdew et al. in 1982,
the exact energy for a system with a fractional number of
electrons has been known for many years. This work shows that
for a fractional number of electrons N+ 6,0 < 0 < 1

E(N + 0) = (1—0)E(N) + OE(N + 1) (52)

253

This means the total energy is a linear interpolation in between
integer points. The elegant and informative proof uses the grand-
canonical ensemble with a bath of electrons to allow electron
numbers to fluctuate. This directly utilizes the underlying
Schrodinger equation to help understand subsidiary considera-
tions about the energy expression within DFT.*** A pure-state
proof using size-consistency was also given by Perdew.”>® Later
work from Yang et al.”*® using size-extensivity proved the same
final result but from a pure state perspective, namely, that of
infinitely stretched degenerate systems with varying numbers
of electrons. As for H3, an additional requirement (which is
physically correct) is that of size-extensivity. Although this proof
only covers the rational numbers, an alternative proof that covers
the irrational fractions has been provided by Ayers.”>” To
summarize these proofs, we can consider Figure 3, which
illustrates some elements of the different views of the problem.

It should be noted, for the more mathematically inclined,
that all the proofs also rely on the convexity of E vs N at the
integers, which is thought to be generally true for electronic
systems. Currently, there are no known counterexamples
in nature, although this is yet to be proven. This proof is dif-
ficult, although there are no known counterexamples for the
Schrodinger Hamiltonian (with electron—electron interaction
¥:5(1/r;). There are known counterexamples for other types of
electron—electron interaction.”*® Therefore, if convexity is true
for all systems, it is not a general property of all Hamiltonians
but relies upon the Coulomb nature of the electron—electron
repulsion.

To some degree, the extension of DFT to fractional charges
looks like a foray into a world outside of physical systems. A
chemical system that has a fractional number of electrons does
not in fact exist. So how can this help us? What is the essence
behind the perspective of fractional charges? Although these are
complex questions, it is important to understand that this foray
into fractional charges is an attempt to look at the properties of
the functional rather than at the chemistry. In this case, the pure
state proof of Yang et al. is valuable, as it highlights a clear
connection to a real molecule. In fact H'/ 2* which is a fractional
system, is directly connected to a real system, namely, infinitely
stretched Hj. It may also (via the functional) be connected to
other real systems without such a clear link (for example, the
delocalized density in part of an aromatic organic molecule). This
highlights the fact that a consideration of fractional charges in
DFT is key to understand some properties and failures of the
functional. It is evident that if we can construct an LDA or GGA
functional that works for H'/?*, then it will also work for a real
integer system Hj (this clearly follows as all the pieces are size
consistent). Furthermore, if it gives too low an energy for HY?,
then it will fail for H; dissociation. This direct connection is
important as it enables us to trace the error from functional space
into chemical space: from a fictional fractional system to a real
chemical system.

Band Gap in Terms of Chemical Potential. 1t is also
important to realize that the fundamental band gap (or chemical
hardness) can be understood clearly from the behavior of E vs
N> as in Figure 3. The fundamental gap is given by the
difference between the ionization energy and electron affinity

Ege¥" =1—A
= [E(N — 1) = E(N)] — [B(N) = E(N + 1)]

which can be compared with the derivatives at N, taking the
difference between the derivative to the left and the right

deriv. __ 0E 0E

N N
N+ N-9

(s3)

For the exact functional, E;';t;ger = Eg:lr,iv due to the straight line
nature of the exact energy. This is a key result that may help us
understand some of the failings of approximate functionals. This
is especially true for describing the band gap of solids.

KS-DFT for Fractional Charges. The initial and simplest way
used to calculate fractional charges with approximate functionals
was to perform a calculation on molecules with odd numbers of
electrons and stretch them to infinity.>*® This approach has
absolutely no problems with size-consistency, as the form of all
the approximate functionals used is rigorously size-consistent, so
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Figure 3. Energy vs number of electrons (E vs N) curve for (a) solution of the Schrodinger equation for integer species, (b) DFT for fractional species
from eq 52, (c) including stretched molecules Hj and H, ", and (d) the Yang, Zhang and Ayers256 extension showing many stretched molecules.

the only issue is whether the calculation can in fact be carried out.
These calculations can be performed without any changes to the
code and with the usual integer idempotent density matrices that
are widely used in DFT and HF calculations. However, the
stretching to infinity often causes minor technical challenges;
with some determination these can be overcome. On the other
hand, a simpler and more direct route to carry out such
calculations involves a minor modification of any DFT code to
explicitly use fractional occupations.”" In some way, the Kohn—
Sham scheme must be extended to account for fractional
occupations, since the original stipulation is that the occupation
numbers of the orbitals should either be 1 or 0. A generalization
to fractional numbers of electrons is easily achieved using
fractional occupation of the frontier orbital (the highest occu-
pied/lowest unoccupied orbital )**°

1 for € <eg
ng = 0 for €, — €g (54)
0 for € >¢€p

Since the occupation numbers in eq 54 are between 0 and 1, the
extension is explicitly for the regime of spin DFT. Here and in
the rest of this section, we have suppressed the spin index o to
simplify the notation. Thus, the spin index is implicit in the
orbital index i and the calculations are spin-polarized calcula-
tions. With these occupation numbers for the density, p =
Z,-n,-q)iz, we can minimize the modified Janak-type Kohn—Sham

energy

E= 3 ndal =371 + [ veu) ple) dr + Jlp] + Bl

(55)

with Kohn—Sham equations for fractional charges

<—;V2 + Vext(r) + V](I') + VXC(r)>¢i(r) = qu)i(r)
(56)

The only difference from the normal Kohn—Sham equations is
due to the dependence of v; and v, on the density, which in this
case is fractional. For example,

2 ¢ (r)
v(r) = / —d (57)
v —r|

The execution of some DFT calculations for fractional charges
is quite revealing in the performance of many different func-
tionals. Figure 4 shows the behavior of the energy of the carbon
atom with between five and seven electrons (3a23 — 402 —
5a2f3). In this case, the gap is given by the gap in the a spin
spectrum. However, it should be noted that the gap is not always
given by either of the gaps in the spin spectrum. For example, for
the nitrogen atom (4023 — Sa2f3 — Sa3p3) it would be given by
a mixed gap E,,,, = 8E/8N|Nﬂ+(; — 0E/ON|y,—s-

The behavior of the curves with approximate functionals is far
from correct as the initial slopes do not correctly point to the
integer values. This has two effects, first the eigenvalues will not
correspond to the correct values. Second, and more importantly,
the error for fractional charges highlights a real energetic error in
a larger system: for example, infinitely stretched C," or infinitely
stretched C;¢p . The fact that the initial slopes are incorrect leads
to an energetic error in a real stretched molecule.

4.1.4. Chemical Potential and Physical Meaning of the
Frontier KS and GKS Eigenvalues. Electron removal and
addition are two fundamental electronic processes in chemistry
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and material science. For solids, the difference between the
ionization potential and the electron affinity is the fundamental
band gap. On the other hand for molecules, it is the chemical
hardness identified by Parr and Pearson,*® a factor of one-half is
neglected. The band gap plays a critical role in determining the
properties of electron transport, structure and energetics of
defects and interfaces, and many electromagnetic res;)onses.261
Hardness, chemical potential,”*> and Fukui functions*®* are the
key quantities of the chemical reactivity theory.”*>**2%%
The chemical potential is the derivative of the total energy with
respect to particle number when the external potential is fixed

‘. (E)EV(N)>V 58)

oN

As a consequence of the linearity condition (eq 52), u is a
constant between the integers and has a derivative discontinuity
at the integers

oy [ I0%) = E(No) —E(No—1), i No—1<N<Ny
uN) = —A(Ny) = E(No + 1) —E(No), if No<N<Np + 1

(59)

where I(Ny) is the ionization potential of the Ny-electron system
and A(Ny) is its electron affinity.

For the Kohn—Sham reference system with a local potential
v,(r), here we use the potential functional formulation.”" The
electron density p,(r) can be represented as the set of orbitals and
occupation numbers {¢;n;} or, equivalently, by the local poten-
tial and total particle number {v,(r),N}. Thus the total energy
functional, formally in terms of the density as E,[p(r)], can be
equivalently expressed as E,[v,(r),N]. The ground state energy is
the minimum of the KS energy functional, expressed (explicitly
or implicitly) in terms of the local potential v,(r):

E,(N) = min E,[v, N] = E,[v* N] (60)

where the minimizer v§° is the optimized effective potential

(OEP), as established.?' The variational nature of v8° means that

(OE,[vyN])/(Ovy(r))|se = O, simplifying the calculation of the
237 :

derivative:

<8E1,> [ OE[u,N]

N Ovy(r) |,

We will drop the superscript gs for the ground state quantities in
cases where there is no confusion.

Now we would like to express the result of eq 61 in terms of
{¢;n;}. Consider a change in the total number of electrons N =
Ny + 0 . At the fixed v¥", all the orbitals {¢$°} as its eigenstates are
fixed. Since py(r) is the ground-state density of the reference
potential v§°, only the frontier level occupation g is allowed to
change 0 = Ony, thus

_ (%) _ (0BT n
#= (azv)f( o >{¢‘g§} (62)

where the frontier orbital is either the lowest unoccupied
molecular orbital (LUMO) or the highest occupied molecular

8v§s(r) dr + <8E,,[V§S,N]>
o

oN oN
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Figure 4. Failures of an approximate functional, B3LYP, for fractional
charges. (a) The exact fractional charge behavior for the carbon atom.
(b) B3LYP predicts accurate energies at the integers but fails for the
energy of fractional charges. (c) The initial slope of the B3LYP curve at
N = 6 does not give an eigenvalue that agrees with the ionization energy.
(d) B3LYP gives too low energies for real stretched molecules.

orbital (HOMO):

NLUMO if 0>0
e { NHOMO if 0<0 (63)

Equation 62, obtained by Cohen et al.,**” is a key result linking
the chemical potential to quantities in the KS or GKS reference
systems. Applying eq 62 to the total energy expression and using
the results of the Janak theorem for KS (eq 48) and its extension
to GKS (eq 49) result in an important conclusion regarding the
physical meaning of the frontier KS or GKS eigenvalues. Namely,
that they are the corresponding chemical potentials:**” when E,
is an explicit functional of the electron density, p(r), either local
or nonlocal

H = € (64)

and when E,. is an explicit and differentiable functional of the
noninteracting density matrix p,(r,t’) (or orbital functionals)

= e (65)

These two scenarios cover all commonly used functionals, but
further extension is necessary for functionals that are not
differentiable and are needed for describing strong correlation;
see section 5. Note that for differentiable functionals of the
orbitals or density matrix, it is possible to carry out KS calcula-
tions via OEP, but the resulting frontier OEP eigenvalues are not
equal to the chemical potentials; a correction is needed.”*”

Expanding these relations and assuming that the functionals
under discussion satisfy the exact linearity condition (eq 52) and
are simply differentiable, for functionals depending explicitly on
the electron density p(r) we now have

€EHOMO — -1 (66)

€L, UMO — —A (67)
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and for functionals depending explicitly on the electron density
matrix py(r,r)

Gglc()iao = -1 (68)
Eggfao = —A (69)

While the connection of the KS HOMO eigenvalue to — I has
been well established,”>*** the physical meaning of the KS
LUMO eigenvalue and both frontier GKS eigenvalues have only
been developed recently.”*” How well these frontier KS and GKS
eigenvalues approximate the experimental values of — Iand — A
is a different question. The answer depends on how well the
functional satisfies the linearity condition.

We have seen in Figure 4 that commonly used functionals, for
a system such as the carbon atom, do not obey the assumption in
eqs 66—69, because they do not have the correct linear behavior
in between the integers. For small systems, the eigenvalues from a
GGA functional will typically underestimate I by about 100 kcal/
mol and overestimate A by a similar amount. However, several
functionals have now been developed that have improved
straight line behavior. For molecules, these have tended to
include some amount of lon%—range Hartree—Fock exchange,
e.g., TCAM-B3LYP or BNL.”*?%® These functionals give a good
prediction of frontier eigenvalues.”***”>%” Other approaches use
similar ideas.**®>"° A fixed amount of range separation does not
always result in consistently good results, and this has led to the
possibilitg of tuning the range separation for the systems of
interest.””"*”> This understanding and approach for molecules is
very enlightening and useful, although, it must be acknowledged
that there is some way to go before it fully helps to correct the
band gap across the whole range of systems including those in the
solid state. These often present a slightly different challenge. Con-
tinuing along this direction of thought, a nonempirical scaling
correction method, inspired by eq 51, has been developed to
restore the straight-line behavior of the total energy. It is applicable
to a variety of mainstream density functional approximations.””> A
scaled version of a modified LDA predicts band gaps with a an
accuracy consistent for systems of all sizes, ranging from atoms and
molecules to solids. The scaled modified LDA thus provides a
promising tool to quantitatively characterize the size-dependent
effect on the energy gaps of nanostructures.

4.1.5. Fractional Occupations vs Ensemble. The question
now arises, which one is correct, the fractional or the ensemble
view of DFT? This a key question and really at the heart of
understanding some of the key issues. It is important to ap-
preciate that although the energy of an isolated fractional system
is of key importance, the real interest lies in understanding the
results of calculations on real integer systems that, from the point
of view of the density (or the density matrix I'; ), appear to have
separated into fractional pieces. If we pose the question “what do
functionals predict for hydrogen with half an electron?”, the
ensemble approach would require us to calculate a system with
no electrons (which as far as we know no functional gets
incorrect!) and then the hydrogen atom with one @ electron
for which all functionals (e.g, PBE, B3LYP, etc.) do a very
reasonable job. The linear combination of these would give an
excellent prediction for the energy of H'/?*. However, the very
same functionals applied to stretched H; would give qualitative
failure, as seen in Figure 2. This alone seems to us to highlight the
relevance of understanding the importance of functionals for
calculations with fractional but only because of their appearance

in real integer calculations. This idea is simply encapsulated by
0 -0
Y(a--B) = () + 17 0(p)

As all the usual functional forms such as Ep® satisfy size
consistency if A and B are well separated

EMF[IY(A---B)] = B[O ()] + EXFIOY U0 (B)]

EPAIY(A-++B)) = EPADT0(A)] + BP0 ()]

and the resultant total energies in an integer system suffer from
the fractional errors of the functionals. However, at infinite
separation these errors are just an illustration of a deeper error
that can be seen at all distances such as at very finite dis-
tances (even at 3 A the functionals are already in large error by
20 kcal/mol).

Hartree—Fock for Fractional Charges and Ensembles. One
question that often arises is how it is possible for a wave function
based method, such as Hartree—Fock, to be carried out for
fractional numbers? By its very nature the wave function is only
definable for an integer number of electrons. This is analogous to
the situation that arises in Kohn—Sham DFT, where if we restrict
ourselves to integer occupation of Kohn—Sham orbitals, frac-
tional calculations are not possible. When we get to the level of
the Hartree—Fock equations and energy expression, which come
from a wave function, they can in fact be written exactly in terms
of the one-particle density matrix and easily extended to frac-
tional occupations.

Consider the exchange part of the Hartree—Fock energy,
which can be written as below in terms of the one-particle density

matrix, p(r,r’) = L,0,(r) ¢,(r')

HF _ 1 Ps(l';r/)z /
Ex [ps} - 2// |I‘—1’l| dl‘dl‘

For two possible integer number of electrons N and N + 1 with
two wave functions WY — oY and WN*!' — pN*! we can
consider a fractional system in terms of

Ep ] = — / / ool 0 2 dry ey
- [ [1a -0+ on
x[(1=0)pY + 0p) T']/2r1, dry dry

= [ [1a=orae + 200 - a)pp

—+ (SZPN + lpi\] + 1}/27’12 dl‘] dl‘2

S

However, the ensemble energy is given by
EsenbepN +9] = (1= §)E, (o] + SB[
== //[(1 =)y + op) e T /2rz dry dry

The first case corresponds to the fractional perspective,
whereas the second one refers to the ensemble mixture. They
give different results for approximate functionals. The key result
is the understanding that, for a system that separates into
fractional pieces, such as stretched Hj, an approximate func-
tional that is not linear in its basic variable (the Coulomb is
quadratic in p, Hartree—Fock is quadratic in p;, all DFT pieces
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are nonlinear in p) will have a difference between the ensemble
and fractional energies.

This important understanding also has implications for various
other methods, for example, many-body theories such as RPA,
where the basic variable in this case is the single particle Green’s
function Gy for the noninteracting reference system. For these
methods, the valid and undoubtedly most important way to
understand the fractional pieces found in H is again to take the
ensemble at the level of the basic variable and evaluate the energy
of the ensemble Green’s function. Gl(;m5 = (1 — 9)Gy +
OGY*!, Efrec[Gh+01274 Again, for approximate methods this
fractional result may well be different from the ensemble at the
level of the energy, as has been seen for RPA in stretched Hi 27

4.1.6. Delocalization Error. Commonly used approximate
functionals deviate from the exact linearity condition for frac-
tional charges with a convex behavior.”>"*>* This convex beha-
vior means approximate functionals will give too low energies for
a delocalized charge distribution, and/or tend to favor fractional
charges or delocalized charge distributions over the integer or
localized ones. This results in the definition of the delocalization
error, as related to the negative deviation of the E(N) curve from
the exact linearity condition for fractional charges. Conversely,
for functionals with concave behavior for fractional charges, such
as HF, delocalization of the charge will raise the energy. Such
functionals tend to predict too localized charge distributions and
hence give rise to localization error.”>>

An understanding of this deviation from linearity can be
viewed as a problem of fractional charges. It may well be key
for the future development of functionals. However, one usually
does not carry out a calculation on an explicitly fractional system,
and furthermore, for normal calculations of real molecules we
cannot explicitly see such separation in these fractional pieces.
For example, in H; we can only make the division into two
fractionally charged atoms as the internuclear separation ap-
proaches co. However, there are errors throughout the binding
curve. For example, at 2 A, LDA/GGA already have an error of 20
kcal/mol. Another useful way of understanding the problem is
from a perspective of the electron delocalizing. Consider a typical
GGA calculation on a single proton and a single electron
(a Hydrogen atom), a case that exhibits no important error.
However, if we add a second proton infinitely far away, which
should of course have no effect on the energy, it gives the electron
the possibility to delocalize. The GGA functional takes this
possibility into consideration and puts half an electron on each
proton. Very importantly, this electron delocalization is coupled
with a massive drop in energy. If another proton is added, the
electron will delocalize further with a third of an electron on each
proton and an even lower energy with the GGA functional. All of
these cases should be energetically the same, but the GGA
functional gives an incorrect lowering of the energy the more
the electron delocalizes.

Another prototypical example where the systematic error can
be seen clearly is the ionization of clusters of He atoms at finite
distances, as seen in the case of Figure S for an 8 X 8 square of He
atoms separated by 2 A . The density difference illustrates nicely
the error of a GGA functional, such as PBE, which will spread out
the electron density. However, the error in the density is actually
secondary, since it is driven by the energy. This can be seen from
the ionization energy from the different methods: from CCSD it
is 500 kcal/mol and for PBE (which is very similar to other GGA
functionals) it is 340 kcal/mol, and this only changes by around
10 kcal/mol if the HF density is used. The density (although

PBE MO06-2X

Phole

Figure 5. Visualization of the delocalization error: The density differ-
ence or hole, ppoe = Pn — Pn-—1, for the ionization process Hegq —
Hey," is shown for four different methods. CCSD gives a good
description of Py in this system. In comparison a GGA functional,
such as PBE, overdelocalizes py,o1., whereas Hartree—Fock overlocalizes
Phole- A hybrid functional, such as M06-2X, which has quite a large
amount of exchange (58%), still does not adequately describe Py,

visually illustrative) is only a secondary factor, because the
overriding problem is the energy given by the functional.

The delocalization error is not just intrinsic to stretched
systems or odd electron systems. It is clearly seen in these cases,
but these are just examples of delocalized densities. Any system
with a delocalized density may be affected by similar errors,
perhaps even metallic solids. However, it is possible to see some
trends in much smaller systems, for example, in closed-shell
organic molecules, which are often thought to be relatively
simple in terms of their electronic structure. Despite this there
have been several problems identified in the literature.””**”” One
such problem for DFT is the case of the isomers of [10]-
annulene.””®*”” For example, let us consider the twist and heart
conformations; one has a density that is localized and the other
delocalized. The results with many approximate functionals
relative to CCSD(T) calculations are given in Table 4. CCSD(T)
gives the twist isomer a lower value than the heart conformation
by about 6 kcal/mol, whereas GGA functionals predict the
opposite by around 8 kcal/mol, an error of around 14 kcal/
mol. This reflects the tendency of GGA functionals to give too
low an energy for delocalized charge distributions. This is a quite
large and systematic error. Furthermore, from the results pre-
sented in Table 3 the performance of functionals can be seen to
be highly related to the error on a fractionally charged system (in
this case the ionization of methane, CH," — CH,). This is the
key understanding of the delocalization error that relates these
two problems and highlights the fundamental issue that a
mathematical error of the functional for fictitious systems relates
in fact to problems in chemistry, not just the hypothetical
chemistry of infinitely stretched molecules but, in this case, an
important isomerization energy of a real organic molecule.
Overall, the delocalization error of approximate functionals is
very important and has clear physical consequences. It is also
important to realize that the distribution of the electron density
can actually be dictated by errors of the functional rather than the
underlying physics of the problem.

4.2. Stretched H, and Static Correlation Error

Many of the problems regarding DFT applications reported in
the literature can be explained from the perspective of delocaliza-
tion error or similar issues. However, there are many other
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Table 4. Seeing the Delocalization Error in Organic Chem-
istry: Errors of Many Functionals for the Twist to Heart
Isomerization Energy of [10]-Annulene, C;oH,o"

L)

functional annulene error[CH,™]
LDA —14.27 —15.97
GGA and Meta-GGA Functionals
BLYP —13.95 —15.62
HCTH —14.37 —15.54
HCTH407 —14.47 —15.42
PBE —14.08 —15.54
BP86 —14.12 —15.44
BPBE —14.05 —15.48
OLYP —14.93 —15.59
OPBE —15.04 —15.45
TPSS —14.47 —14.97
MO06-L —11.44 —14.61
Hybrid Functionals
TPSSh —12.75 —13.08
B3LYP —10.60 —11.76
PBEO —9.91 —10.66
B97—-1 —10.34 —11.74
B97-2 —10.60 —11.70
B97-3 —9.35 —10.69
Mo06 —6.86 —10.92
MO06—2X —2.74 —6.23
MO06-HF 2.66 1.19
HF 3.90 4.38
HFLYP 2.70 3.83
Range-Separated Functionals

CAMB3LYP —3.23 —=5.19
LCBLYP 2.33 —0.99
rCAMB3LYP 4.66 1.89
LCPBE 3.83 0.60
HSE —10.33 —11.93

“The third column gives the error of many different functionals for frac-
tional CH,, error[ CH,™] = ¥!Z °E[CH, /'] — {(1 — 0.1i)E[CH,] +
0.1iE[CH,4"]}. There is a strong indication in the errors that the error of
delocalization in the aromatic vs nonaromatic isomerization is related to
the delocalization error of fractional charges.

molecules where this does not apply, especially in terms of
the performance of functionals. Probably the simplest illustration
of this is provided by the closed-shell stretching of H,
(Figure 6).116:137:280-282

Most approximate functionals fail to properly stretch H,. Of
course there is the possibility of breaking the spin symmetry,
which may be allowable at infinite separation, but this solution
does not give the correct ground state for any other distance.
Both from experiment and also accurate wave function calcula-
tions, the ground state of H, should be closed-shell with zero spin
density everywhere [p(r) — pg(r) = 0, V r]. If we look again at
infinity, it becomes clear that the true problem is that many states
that should be degenerate are not; they are given different
energies by approximate functionals.

4.2.1. Static Correlation and Degeneracies. The usual
understanding of stretching H, and related problems is that of
static correlation. From a quantum chemistry perspective, it
corresponds to a situation that is inherently multideterminental,
and single determinant approaches will fail. For example, for infinitely
stretched H,, HF has an error of around 190 kcal/mol. Perturbation
theory built from this erroneous starting point breaks down, and in
fact, the MP2 energy goes to — oo because of the degeneracy of the
orbitals.”®> The quantum chemical methods used to treat these
difficult cases are generally built upon a multiconfigurational
starting point such as CASSCF. This gives rise to methods such
as CASPT2, MRCI, or MRCCSD. There have also been some
success in combining these wave function ideas with DFT to give
methods such as CASDFT 28286 However, in these cases, it is a
deeper understanding of Kohn—Sham DFT that is required. It has
even been questioned if Kohn—Sham DFT applies in these
difficult situations involving degeneracies and near-degeneracies.
We believe this is merely a challenge for the exchange—correlation
functional, which is formalized in the next section in terms of
fractional spins fully within Kohn—Sham DFT.

4.2.2. Fractional Spins. Another key way to view the pro-
blem of static correlation is by considering the division of infini-
tely stretched H, into two closed-shell hydrogen atoms. Each of
these subsystems is a hydrogen atom with one electron, but with
'/, spin up and '/, spin down (H['/,a,"/,8]). It is obvious that
the closed-shell hydrogen atom could be calculated using a
restricted calculation but with an odd number of electrons. How-
ever, we can extend the fractional occupation formalism to have
more than one orbital fractionally occupied. The general principle
is that for a degenerate orbital one can have fractional occupa-
tion of more than one frontier orbital. In the case of a g-fold
degeneracy.

1 for € <ep

n = 5i for €; — €g

g
Y 0i=1 (70)

0 for € >e€g

The formal occupation numbers apply only in the case of an
exact degeneracy. However, we can also extend the idea to a case
of near degeneracy or maybe in approximate DFT calculations
when orbitals that should be degenerate are not exactly so. For
example, consider the case of a fractional spin hydrogen atom,
H[0.6,0.4/3], which, from Figure 7, would come from the
degenerate wave function ¥ = [(0.6) 2@ 4 (0.4)"*W,]. From
the same arguments as above for stretched H,, it of course must
be degenerate in energy with a normal hydrogen atom. This gives
rise to an exact condition that should be satisfied by exchange—
corregtzion functionals; the constancy condition for fractional
spins

g

E Z Ci;

i=

In the case of the energy of the H atom, E[n,,ng], it can be
expressed as

B0 = Ho 1 =235 —Eha-n] (2
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Figure 6. Binding energy curves of closed-shell stretched H,, calculated
using LDA, B3LYP, and EXX (all from B3LYP density and orbitals), to
be compared with an exact curve (FCI in a cc-pVQZ basis set). After 10
A the x axis changes to a logarithmic scale and the final point at infinity is
from an explicitly fractional spin calculations (2 x H['/,a,'/,8]).

where 0 < y < 1.1t can clearly be seen that the error of stretched
H, is nothing more than a failure to satisfy the exact fractional
spin constancy condition.

It is also possible to have fractional-spin states arising from an
ensemble of states that are degenerate because of other symme-
tries, such as spatial degeneracies. This can be understood by
considering an isolated open-shell atom, such as the boron
atom,”®” which has a 3-fold spatial degeneracy between the p,,
Py and p.. DFAs gives rise to lower energy nonspherical solutions
such as p,lcpgpg that should be degenerate with many other states
such as the spherical one, py p}l,/ 3p/3 that has a fractional
occupation of each p orbital. However, violation of the constancy
condition, eq 71, by DFAs means they give an incorrectly higher
energy to all fractionally occupied states, including the spherical
one. The fractional spin error is a basic error and, like the
fractional charge error, can produce qualitatively wrong density
distributions.

Fractional spins have been used to describe the spin state
splitting in open-shell singlet molecules successfully with normal
DFA, thus preventing spin contamination associated with normal
broken symmetry calculations of the same functional.”*’”

4.3. Coming in from Infinity

The fractional understanding clearly relates to molecules at
the infinite distance limit, but it is also evident that there are clear
related deficiencies as one comes in from infinity toward finite
distances. Again, let us consider stretched H;. Here the failure of
local functionals is not just the value of the energy at infinity but
also the asymptotic behavior as one approaches infinity. In fact,
for LDA and GGA functionals, we can restate the problem that
they have an incorrect asymptotic R~ behavior”®® (which is of
course coupled with the incorrect R = oo behavior). This is
because they fail to correct for the asymptotic behavior of the
Coulomb term. The challenge of the asymptotic behavior of the
functional can be seen in the contrasting behavior of functionals
in stretched H,. In this case, LDA and GGA functionals have the
correct asymptotic behaviors (just the wrong R = 0o behavior). It
is Hartree—Fock this time that has the incorrect R~ behavior, as
now the Coulomb interactions between electrons and nuclei
are correct at the level of the Coulomb term and an additional
R™! from the Hartree—Fock term is incorrect. To reiterate, the

A B
JE “/\ “’2
A B
oo p) 3B %aj@ (P4 +¥)N2
A B

Figure 7. Fractional spins in stretched H,. W; and W, are two
degenerate and orthogonal wave functions. Any combination of these
two wave functions is degenerate in energy. One example given is (¥, +
W,)/2"2, which yields a very different looking density. The degeneracy
is obvious from the wave function (in Hilbert space) but is a real
challenge for the energy functional (in 3D space).

long-range interaction contained in the Hartree—Fock exchange
energy gives the correct behavior for stretched Hj, but the
incorrect behavior for stretched H,.

In this simple case of two protons with one and two electrons,
this long-range asymptotic behavior for DFA illustrates a difficult
challenge in functional construction. This raises the question of
whether to use long-range Hartree—Fock exchange or not. Solid-
state systems have a very different external potential and there is
no doubt that the screening of long-range electron—electron
interactions?®”8%2%° plays an important role and must also be
understood from this perspective.

5. STRONG CORRELATION

We have just illustrated some massive failures of DFT func-
tionals for two of the simplest systems in chemistry, which can be
understood from the perspectives of fractional charges and
fractional spins. Simultaneous understanding of both of these
concepts is of key importance and is perhaps the simplest
manifestation of a term coming from the physics community:
“strong correlation”. A strongly correlated system conjures up an
image of a system in which electron interactions are particularly
difficult to describe. However, in DFT, the nature of the problem
changes, and it can be viewed from the perspective of the
functional. The challenge of strong-correlation in DFT is actually
to find one functional that works for all systems. The simplest test
of this concept is to ask if a single functional can simultaneously
work for two systems, infinitely stretched H, and Hj or,
equivalently, a hydrogen atom simultaneously with fractional
charge and fractional spin. More broadly, we would like to see
functionals with significant simultaneous reduction of the delo-
calization and the static correlation error for all systems.

The understanding of correlation arising from a quantum
chemistry perspective divides the correlation energy into dy-
namic correlation and nondynamic correlation (also called left—
right or static correlation). In quantum chemistry, the correlation

energy, E,, is defined by
Ec = Eexact - EHF (73)

However, the division into dynamic and static correlation is
not defined rigorously. In terms of “hand-waving” arguments,
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dynamic correlation is roughly associated to “simple” correla-
tions, describable by atomic-like correlation (due to Coulomb
repulsion). On a DFT level, it is describable by correlation
functionals such as EX""[p] or EX**[p], not unlike the correla-
tions that would be seen in the uniform electron gas. Static
correlation appears in situations where multiple determinants
associated with degeneracy or near degeneracy are needed.””’
The classic extreme example is that of dissociating H,. First at
equilibrium distance, HF is improved by MP2 to give a very good
description and also happens to be reasonably corrected by HF +
EXYP[p]. However, as H, is stretched, the basic Hartree—Fock
description gets even worse, HF + MP2 breaks down, and HF +
LYP is basically just as wrong as HF. This is often described as
pure nondynamical correlation or left—right correlation.** This
gives rise to some important questions. What does a DFT view
have to add to this understanding? Can we shed any light on the
connection or difference between static correlation of quantum
chemistry and strongly correlated physics? Are they the same or
different?

While the general and precise definition of static correlation
energy is difficult, a clear and rigorous definition of static
correlation error of density functionals has been given: it is the
deviation from the constancy condition for fractional spins.”®* It
is peculiar that we cannot define static correlation energy itself
clearly, but we can detect if a DFA correctly or incorrectly
describes it.

5.1. Errors for H3 and H, at the Same Time

The errors seen in the previous section for Hj (delocalization
error) and H, (static correlation error) are extremely important.
However, it is our contention that a much deeper understanding
comes from a consideration of both at the same time. In
chemistry, the simplest atom has one proton and the simplest
molecule has two protons with one or two electrons. The
simplest distance mathematically is either O or co; O represents
another atom. Therefore, our simplest molecule has two protons
separated by oo with one or two electrons. So infinitely stretched
H; and infinitely stretched H, are the two simplest possible
molecules in the chemical universe. The trivial exact solutions to
the Schrodinger equations give the energies of these systems,
— 0.5E;, and —1Ey,, respectively, as well as exact densities that are
known in closed form. It is surprising that these two simple and
trivial molecules are still an incredible challenge for DFT. To
consider more clearly these two molecules as one conceptual
challenge, we will group them together as the hydrogen test set
(HTS). To test an approximate functional for this set, one can
carry out molecular calculations for the molecules at a very large
bond length, making sure to impose symmetry. Alternatively, one
can carry out explicit fractional charge and spin calculations for
the atom, which is often much easier.

Strong correlation has been phrased in many different ways.
However, the simultaneous consideration of the energjes of the two
simplest molecules in the chemical universe, Hy and H,, poses the
question of strong correlation in an extremely useful manner. Table 5
and Figure 8 show the performance of different approximate func-
tionals for the HTS. Currently, there is no functional that is even
remotely capable of describing these two systems. The performances
on the standard thermochemistry and kinetics can give errors as small
as 3 kcal/mol. However, for these two simple and trivial molec-
ules, the average error is around 60 kcal/mol. This average error is
virtually constant, irrespective of the individual performance on either
system or the particular form of the functional, whether it be GGA or

292—294

Table 5. All Functionals Fail for the Simplest Molecules:
Individual Errors (in kcal/mol) for Infinitely Stretched Hj
and H, as Well as the Mean Absolute Error of Both, the
Hydrogen Test Set (HTS)"

functional H; H, HTS
LDA —62.96 40.91 51.93

GGA and Meta-GGA Functionals

BLYP —68.86 44.52 56.69
HCTH —69.80 46.15 57.97
HCTH407 —69.25 48.32 58.79
PBE —66.70 51.69 59.20
BP86 —66.64 43.99 55.32
BPBE —67.68 51.05 59.36
OLYP —69.82 43.19 56.50
OPBE —68.64 49.72 59.18
TPSS —63.87 52.50 58.19
MO06-L —62.61 63.17 62.89

Hybrid Functionals

TPSSh —57.31 63.64 60.48
B3LYP —54.17 67.93 61.05
PBEO —49.29 81.88 65.59
B97-1 —53.90 77.50 65.70
B97-2 —55.14 76.72 65.93
B97-3 —49.92 81.45 65.68
Mo6 —53.16 77.01 65.08
MO06-2X —36.65 103.45 70.0S
MO06-HF —15.83 140.80 78.31
HF 1.77 182.58 92.17
HFLYP 1.77 165.90 83.83

Range-Separated Functionals

CAMB3LYP —30.40 110.39 70.40
LCBLYP —14.76 139.77 77.26
rCAMB3LYP =521 157.03 81.12
LCPBE 1.96 169.49 85.72
HSE —56.08 70.19 63.13

Functionals of the Unoccupied Orbitals

RPA —108.0 0.0 54.0
RPAE 0.0 120.0 60.0
MP2 0.0 —00 [*3)

“erroryrs(H3) = (E1?12F+A - EEIFA) and erroryrs(Hy) = (EBZFA - ZE}D[FA)~
Although the individual errors for each molecule depend on the
particular functionals, the mean absolute error for both, the HTS
column, is very similar and disastrous for all functionals.

hybrid or range-separated and whether it be semiempirical or
parameter-free. The error analyzed here is not dependent on these
aspects of the functional, although, of course, we have seen that there
is much of chemistry that is, for example, improvement on the sets in
section 2. Furthermore, this particular view of the error has not been
used in the construction of functionals. We have also included some
performance of functionals of the unoccupied orbitals and eigenval-
ues, mainly to illustrate that despite their increased complexity
they do not satisfy this issue either. This is also true for other
methods beyond DFT, such as functionals of the first-order density
(IRDMFT). Here, the simplest such approximation, known as the
Muller functional, corrects H, but only at the cost of a massive error

dx.doi.org/10.1021/cr200107z [Chem. Rev. 2012, 112, 289-320
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Figure 8. Errors of approximate functionals. All the individual errors of the G3 set and set of barriers are shown along with the MAE for the two
molecules of the HTS. Despite the improvement on the G3/barriers, all functionals fail for the two simplest molecules in the whole of chemistry.

for Hj. Similar results are found for functionals of the second-order
density matrix (2-RDM) with approximate N-representability con-
ditions. Without additional corrections,”*® they are only able to tackle
problems of static correlation®” at the cost of failure, with too low
energies, for stretching of systems that can dissociate to give fractional
charges.”””**® This is an incredible challenge!

Of course, this challenge presented by two protons with one and
two electrons captures some of the most difficult physics required
for functionals to reproduce. It even poses the fundamental ques-
tion, is it possible to do it fully within the realm of KS DFT? Of
course, the Hohenberg—Kohn theorem and the other foundational
theorems of DFT provide us with the knowledge and determination
that at least it is not an impossible problem. However, the
performance of the common list of functionals provides us with
what is truly a great challenge. Indeed, it is evident that we need a
different perspective and new ideas in functionals. For example, we
cannot just refit the parameters in functionals and hope that they
can successfully give both H, and Hj. In this regard, we feel it is
extremely important to see the connection between H, and H that
arises naturally in DFT by the use of the same exchange— correlation
functional. We do this in the following section by considering more
general fractional occupation of orbitals, incorporating both frac-
tional charges and fractional spins simultaneously. This allows us to
consider a single hydrogen atom with fractional occupations, exactly
what is found at the stretched limit of both H, and H3, which clearly
shows the strong connection between the two systems.

5.2. Fractional Charges and Fractional Spins

The 2previous behavior for fractional charges> and fractional
spins”®” has been combined in to one unified condition, which is
called the flat-plane condition®”

1
E|—-
2

i=1

lgNH —
GPN,; + a Z dJ'PN+1,;‘ =1 pE(N) + gE(N +1)
j

(74)

Here, p, g, ¢; and d; are all positive real numbers, Z}gNH dj=p,and
Y ¢; = g — p. The degeneracy is gy for the N electron system
and is gy, 1 for the N + 1 electron system. The degeneracies in the
flat-plane condition go beyond the spin symmetry and include all
other degeneracies, either symmetry-related or not. This is an
exact condition for the energy from any method, which is most
readily understood for the hydrogen atom. The energy of the H
atom where the number of electrons is between 0 and 1 or 1 and 2
can be represented by the following two equations respectively,

E[0(ypo + (1=7)pys)] = OEH] (75)
E[(1-0)(ypeo + (1=7)p5p) + 00 4]
= (1— 8)E[H] + OE[H] (76)

Here, 0 <y <1,0=<0 =< 1,and pgﬁ is the density of hydrogen
atom with occupation a/f for spin up and spin down orbital.
These equations are easiest to understand when represented
pictorially, such as in Figure 9, where the behavior of the
energy of the hydrogen atom is shown as a function of fractional
occupation numbers.

Previously, we noted an alternative view (Figure 3d) of frac-
tional systems, which directly connects to the energy of integer
systems. The same argument holds here. In Figure 10 we consider
stretched molecules in symmetric arrangements. One such
example is infinitely stretched Hyo ' [7a,53] in which all the
electrons are symmetrically distributed. This corresponds to 20
identical fractional systems H[0.35,0.25] and a total energy of
—6Ey, or —0.3Ey, per H atom. In practice, we could attempt to
carry out DFT calculations on the *H,o®" at infinite separation.
But, as previously illustrated for H3, it is simpler to utilize explicit
fractional occupations.

We now need to emphasize the significance of Figures 9 and
10, which illustrate some of the most important concepts in DFT.
In these figures, a discontinuous derivative of the functional is
transformed into energetic performances for real molecules.
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Figure 9. The flat-plane condition. The exact energy of the hydrogen
atom with between zero and two electrons.

Thus, the dots in Figure 10 represent energies of numerous
stretched molecules, whose correct solution is a pivotal challenge
for the exchange—correlation functional. The errors for H; and
H, in Table S are a particular subset of the flat plane (Figure 10)
and perhaps represent the most challenging molecules for approx-
imate functionals. Although we previously realized the impor-
tance of the solution of these two molecules (ref 300), we did
not quite fully appreciate the challenge of having a single func-
tional capable of simultaneously solving both H; and H,. This
is due to the connection between the exchange—correlation func-
tional of these two systems. This is clearly illustrated in Figure 9.

‘We now consider the performance of four approximate functionals
for the flat-plane condition (Figure 11). These four approximate
functionals completely fail to give the exact behavior for the flat plane.
This is due to the fact that they miss the correct discontinuous
behavior on going through one electron. All the other functionals
tested (those in Table 5) also fail for the flat plane (data not shown),
which is also to be expected as they fail for Hj and H,.

5.3. Derivative Discontinuity and Mott Insulators

We have seen in the previous sections 4.1.3 and 4.1.4 how the
fractional charge perspective offers insight into the prediction of
the band gap for which most density functional approximations
fail. The main understanding of the gap is that there is a key
change in the derivative when the orbital changes from the
HOMO to the LUMO. For example, in the case of the He atom,
where the HOMO is the 1s orbital and the LUMO is the 2s
orbital, each term of the total energy contributes to the gap

T, T, g 1 S s 1 s
Nl TNl T @TIE VRN = (6% = Ve
N+ N—0
(77)
WV,e Ve ] ] s s
8N - 8N = <¢1 |Vext‘¢l > - <¢2 |Vext‘¢2>
N+0 N—-0O
(78)
a] 8] S S S S
N ~IN = (&"[v]9") — (¢*[vy]¢**) (79)
N+0 N-0O
aELDA aELDA 4
oN | N = <¢“ Seop'”? ¢‘S>
N+0 N—-0
2s 4 1/3| 2s
(950 |e™ ) (80)
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Figure 10. Flat-plane condition from the perspective of stretched
molecules. All the dots correspond to an infinitely segarated hydrogen
clusters with up to two electrons per hydrogen. *Hyo"" as discussed in
the text is represented by a blue dot.
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Figure 11. Performance of some representative approximate func-
tionals for the flat plane condition All functionals are qualitatively wrong
and are missing the correct discontinuous behavior. This means that no
functional is capable of giving the energies of the stretched H3 and H,.
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Each functional contributes to the gap because the HOME) is
different from the LUMO, which is summarized by a disconti-
nuity in the density matrix

op,(x,v') {¢go¢aw if 1<N<2

aN - ¢25 (I’) ¢ZS (I’l> lf 2<N< 3

However, it is informative to consider a chemical species in
which the HOMO and LUMO are degenerate, which is exactly
the case for the closed shell H atom (or He" ion). There is no
derivative discontinuity in the electron density and

8,05(1', 1‘/) o q)ls(r) <Pls(r/) 1f 0<N<l1
aN N q)ls(r) 4)15(1'/) 1f 1<N<2

Consequently, the differences in all these terms are zero

AT, T, . (82)
N N n
N+0 N-0
aane a‘/ne _— (83)
N N o
N+06 N—-0O
3] aJ
= _— = O
N N (84)
N+0 N-0O
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An equivalent system that is sometimes useful in clarifying this
idea is closed-shell infinitely stretched H,, where the HOMO
orbital is ¢romo = g = (1/+/2)(a + 175) and the LUMO
orbital is ¢rumo = 0w = (1/4/2)(17a — 7). This means that
promo = Prumo and also {(dxomol —(1/2)V2|¢H0M0> =
(drumo|—(1/2)V?|¢rumo)- Therefore, in this system clearly
there can be no gap due to the terms T, V., and ] or terms like
EXP20r EFF. However, there must be a gap because the hydrogen
atom (or two hydrogen atoms in the case of stretched H,) has an
ionization energy I = 0.5E,, and an electron affinity A = 0.028E,,.
Hence, it must have a large gap, E,,, = 0.472E;, = 12.8 eV = 296
kcal/mol. Where does this gap come from? Is it possible to obtain
within DFT? Let us look at the KS type equations for the HOMO
and LUMO orbitals, for example, with a hybrid functional mixing
80% LDA with 20% HF:

1 1\
fivz + Vex + vy + O.8c<5¢a2>

Lo
Eq)a(r) ¢a(r)
+0.2/7|1‘—1'/| drPr,r’ (Pia = G1'014)1'(1

1, 1, 1/3
_EV + Vext + vy + 08C<2¢ﬂ )

1

E‘pﬁ(r/) os(r)
+02/ Wdf Pr,r’ q)lﬂ = Giﬂq)iﬁ

Clearly these equations show that the & Fock matrix and the

Fock matrix are equivalent through symmetry and hence so are
all the orbitals and eigenvalues. Most importantly, so are the
frontier eigenvalues €, = €;5. By analogy, due to spatial
symmetry, this also applies to stretched H,, whereby the frontier
eigenvalues are equivalent €5, = €0, In fact, for any odd-electron
system, this will be the case. This encapsulates the problem of
Mott insulators, where “band-theory” (i.e., the eigenvalue
picture) breaks down.>****” If we return to the case of stretched
H,, we can clearly see that the I — A =296 kcal/mol and €gopmo —
€rumo = 0 are not the same. That is

I—A # egomo — €LUMO

Using eq 53 for predicting the gap from the chemical potential
discontinuity and the linearity condition for the exact functional

eq 52, we arrive at
OE OE
Epp =1—-A=|_= =
oN/, N oN/,

which is true for the exact functional. However, we note that
€HOMO/ €LUMO OF €uss10/€CKS o are the chemical potential
only when the condition for eq 64 or 65 is satisfied. Therefore, we

have to conclude that for Mott insulators, the condition for the
validity of eq 64 or 65 cannot be satisfied. The exact functional
cannot be an explicit and differentiable functional of the electron
density p(r), or the noninteracting density matrix p,(r,r’), for all
physical densities or density matrices.

The only place for functionals to be nondifferentiable is in the
unknown E,.. Thus, we can now write down the more general
equations for the prediction of the gap,””

Egp = I —A = €nomo — €Lumo + Axe + Dxc
for KS (or OEP) calculations and

E —I1—A = GKS GKS )

gap €HoMo — €Lumo T

for GKS calculations. €fisao — €t is the difference in the
GKS frontier eigenvalues and incorporates all the discontinuity
due to a change of orbitals, including the smooth part, A, of an
orbital dependent exchange—correlation term. Furthermore,
) . represents only the explicit discontinuity of the exchange—
correlation term and, hence, goes beyond previous work.>"*%
So for a pure Mott insulator, where the eigenvalue difference

GKS GKS .
€HqomMo — €LUMO 1S Z€ro,

I—A= Dy

Itis only a change in the exchange—correlation functional that
can possibly offer a gap. This implies that there is a change in the
functional itself; not just a change in the density or orbitals that
the functional acts on. This is a difficult concept still requiring
clarification. For example, does this imply that we need a different
functional for every N? Have we simply returned to performing a
different FCI calculation for every different number of electrons?
Or is this a different type of change in the functional? In fact, it is
only that the functional has to change more than just changing
the density or the density matrix put in to it.

The problem of the gap in Mott insulators is encapsulated in
the energies of the flat plane. This is illustrated, in an intuitive
manner, as shown in Figure 12 by a specific line of the flat planes.
Namely, the closed shell line from 0 to 2, ie. H'[0,0] —
H['/5,'/,] = H [1,1] with n, = ng = N/2. The curves with
approximate functionals in Figure 12 are, however, completely
wrong. The error in the energy at one electron is exactly the static
correlation error that one would see in infinitely stretched H,
(note the RPA total energy for the IflPin unrestricted H atom is the
same as the closed shell H atom Ejy ** = — 0.52E;,). However, the
key deficiency of all the functionals is that they completely miss
any discontinuous behavior as they pass through the integer
N =1, as can be seen in Figure 12. That is they give &, .= 0. The
common error of these functionals is that the slope on either side
of the integers is the same, ie. (0E/0N)|1+5 = (0E/ON)|i—s.
Although discontinuous behavior is a key challenge for func-
tionals, it is not an impossible one and we have previously pre-
sented a model illustrative functional for the H atom to correctly
reproduce the flat plane behavior.”*® In another effort to satisfy
the flat-plane condition, an interesting functional has also been
developed recently.**"

5.4. Integer Nature of Electrons and the Right Form for E,.

The integer nature of electrons is of course present in an N-
body wave function, but the transformation of this into func-
tionals of the density is an incredible challenge. If we consider the
first step along the path of approximate DFT, which is the
Thomas—Fermi theory, we can see that without knowledge of
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Figure 12. Evs N for the closed shell H atom, H'[0,0] — H[l/z;l/z] -
H [1,1]. The error seen in the value of the energy at 1 is exactly the static
correlation error. However, the discontinuous behavior is missing from
all the functionals and can be seen in derivatives to the left and the right
at N = 1. The hallmark of the failures of density functional approxima-
tions for strong correlation.

the orbitals, the correction to the kinetic energy is massive and all
the integer nature of electrons is missing. With the introduction
of Kohn—Sham theory, even at the simplest level such as LDA,
the concept of the orbital helps the kinetic energy massively and
introduces some discontinuous behavior. In this case, the integer
nature comes in at every two electrons. Spin DFT, the extension
of LDA to LSDA, then makes this discontinuous at every single
electron. However, the discontinuous behavior of LSDA, and
analogously of most functionals in the literature, is not correct for
all situations. We can see this above in the case of the fractional
hydrogen atom (Figure 11), where the corners of the flat plane
are correct but not the whole line at N = 1. What is needed is a
new framework and better functionals that have discontinuities
of the right nature at each electron number. Ultimately, this will
allow the correct description of electron addition and removal
and hence many other phenomena in chemistry.

5.5. Contrast between DFT and Ab Initio Quantum Chemistry

Before we conclude, we feel it is important to offer what we see as
some of the differences between DFT and ab initio quantum chem-
istry. From one point of view, the two methods appear almost
identical. In fact, the rapid rise of DFT is because of the computational
similarity of solving the KS equations to the simplest possible ab initio
method, HF. This similarity means that many DFT codes currently in
use started out as HF and post-HF codes. However, despite this
similarity, it is important to stress the philosophical difference that we
see in their approaches to the electronic structure problem,

E.[p] versus W

From the quantum chemistry point of view, the electronic struc-
ture challenge is clear: for a particular chemical system (specify-
ing vand N in the Schrodinger equation), the main effort is to find
the FCI wave function, . Great work has gone into this very clear
challenge from both a practical and conceptual route.***>% This
challenge for finding W*“ is greatest for systems that are strongly
correlated.

Let us contrast this with the DFT perspective. Assuming
we are given the exact E, [p], then for each system there is a

relatively trivial search to minimize the energy over density p.
However, it is exactly the same functional that works for each and
every system; therefore, it is the functional that is of the same
complexity as doing FCI on all possible systems. What actually
shows up is a very clear connectedness between systems. In DET
this link is through the functional E,.. We can see now that the
challenge is concentrated on the search and determination of the
E,.. Thus, the computational challenge of CI calculations for W is
turned into a theoretical challenge of constructing one universal
E,[p] that is exact for all densities.

For new functionals we feel it will be important to directly consider
this connection between different systems as a central piece of their
development, rather than hoping it somehow arises in a random
consideration of molecules throughout chemistry. Of course, the
functional has to work for all these individual molecules, but it is at the
level of the functional that the connectedness needs to be understood
and exploited. The extension to fractional charges and fractional spins
is one such idea and probably there are even more connections that
can play an illuminating role in functional development. Even we did
not fully comprehend this connection in our earlier work.>* Actually
viewing the problems of H; and H, separately overlooks the true
connection: the fact that it needs one functional to do both systems.

6. CONCLUSIONS

In this review, we have attempted to show some of the successes
and challenges of DFT, both of which can be attributed to the
exchange—correlation functional, E,.. Currently, using DFT with
approximate functionals means it performs well for a wide range of
properties from energetics and geometries of molecules to reaction
barriers and van der Waals interactions. However, we have empha-
sized some important problems, such as delocalization error and
static correlation error, in which the currently used functionals fail.

The ability to describe the energies of stretched H; and H, has
been shown to be a simple way of explaining the concept of strong
correlation. Table 5 and Figure 8 recognize that currently no known
functional is able to simultaneously describe these two systems. It is
the key contribution of this review to demonstrate that the inability
to correctly describe Hy and H, has the same root in the functional
as the failures of DFT in relation to strong correlation.

The basic errors highlighted in this review may not generally have
a large effect at the equilibrium geometries of the most widely
studied molecules. However, they will have a much greater impact as
the range of molecules studied increases and the electronic struc-
tures becomes more complex, for example, in systems containing
transition metals. To combat this problem, we need to develop
better functionals. This, of course, requires a deeper understanding
of why current functionals fail. It is this understanding that offers a
path forward in functional development. For example, the formulat-
ing of relevant exact constraints, such as the flat-plane condition, and
understanding what the relevant challenges of such conditions are to
functionals. In this review, we have shown that the failure of all
currently used functionals for the flat-plane condition highlights the
need for a derivative discontinuity in the functional to give the
energy of H; and H, and, more generally, accurately describe strong
correlation. We believe innovative radically different functionals are
necessary for the advancement of DFT.
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