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Abstract

This article is a rough, quirky overview of both the history and present
state of the art of density functional theory. The field is so huge that no
attempt to be comprehensive is made. We focus on the underlying exact
theory, the origin of approximations, and the tension between empirical and
nonempirical approaches. Many ideas are illustrated on the exchange energy
and hole. Features unique to this article include how approximations can be
systematically derived in a nonempirical fashion and a survey of warm dense
matter.
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1. WHAT IS THIS ARTICLE ABOUT?

The popularity of density functional theory (DFT) as an electronic structure method is unparal-
leled, with applications that stretch from biology (1) to exoplanets (2). However, its quirks of logic
and diverse modes of practical application have led to disagreements on many fronts and from many
parties. Developers of DFT are guided by many different principles, while applied practitioners
(i.e., users) are suspicious of DFT for reasons both practical [how can I pick a functional with so
many choices? (3)] and cultural (with so many choices, why would I call this first principles?).

A modern DFT calculation (4) begins with the purchase of a computer, which might be as small
as a laptop, and a quantum chemical code. Next, a basis set is chosen, which assigns predetermined
functions to describe the electrons on each atom of the molecule being studied. Finally, a DFT
approximation to something called the exchange-correlation (XC) energy is chosen, and the code
starts running. For each guess of the nuclear positions, the code calculates an approximate energy
(4). A geometry optimization should find the minimum energy configuration. With variations
on this theme (5, 6), one can read out all molecular geometries, dissociation energies, reaction
barriers, vibrational frequencies, etc. A modern desktop computer may do a calculation for a 100-
atom system within a day. A careful user will repeat the most important parts of the calculation
with bigger basis sets to check that answers do not change significantly.

2. WHERE DOES DENSITY FUNCTIONAL THEORY COME FROM?

Although DFT’s popularity has skyrocketed since applications to chemistry became useful and
routine, its roots stretch back much further (7–9).

2.1. Ye Olde Density Functional Theory

Developed without reference to the Schrödinger equation (10), Thomas-Fermi (TF) theory (11–
13) was the first DFT. It is pure DFT, relying only on the electronic density, ρ(r), as input. The
kinetic energy was approximated as that of a uniform electron gas, while the repulsion of the
electrons was modeled with the classical electrostatic Coulomb repulsion, again depending only
on the electronic density as an input.

2.2. Mixing in Orbitals

Slater was a master of electronic structure, and his work foreshadowed the development of DFT. In
particular, his Xα method (14) approximates the interactions of electrons in ground-state systems
and improved upon the Hartree-Fock (HF) method (15, 16), one of the simplest ways to capture
the Pauli exclusion principle. One of Slater’s great insights was the importance of holes, a way
of describing the depressed probability of finding electrons close to one another. Ahead of his
time, Slater’s Xα included a focus on the hole, satisfied exact conditions such as sum rules, and
considered the degree of localization present in the system of interest.

2.3. A Great Logical Leap

Although Slater’s methods provided an improvement upon the HF method, it was not until
1964 that Hohenberg & Kohn (17) formulated their famous theorems, which now serve as the
foundation of DFT:

1. The ground-state properties of an electronic system are completely determined by ρ(r).
2. There is a one-to-one correspondence between the external potential and the density.
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We write this by splitting the energy into two pieces:

Eelec[density] = F [density] + NucAtt, (1)

where Eelec is the total energy of the electrons, F is the sum of their exact quantum kinetic and
electron-electron repulsion energies, and NucAtt is their attraction to the nuclei in the molecule
being calculated. Square brackets denote some (very complex) dependence on the one-electron
density, ρ(r), which gives the relative probability of finding an electron in a small chunk of space
around the point r. F is the same for all electronic systems and thus is called universal. For any
given molecule, a computer simply finds ρ(r) that minimizes Eelec above. We can compare this to
the variational principle in regular quantum mechanics. Instead of spending forever searching lots
of wave functions that depend on all 3N electronic coordinates, one just searches over one-electron
densities, which have only three coordinates (and spin).

The pesky thing about the Hohenberg-Kohn theorems, however, is that they tell us that such
things exist without telling us how to find them. This means that to actually use DFT, we must
approximate F[density]. We recognize that the old TF theory did precisely this, with very crude
approximations for the two main contributions to F:

F [density] ∼
∫

d 3r ρ5/3(r) + CoulRep (TF), (2)

where we do not bother with constants, etc. The first term is an approximation to the kinetic
energy as a simple integral over the density. It is a local approximation, as the contribution at
any point comes only from the density at that point. The other piece is the self-repulsion among
electrons, which is simply modeled as the classical electrostatic repulsion, often called their Hartree
energy or the direct Coulomb energy. Such simple approximations are typically good to within
approximately 10% of the electronic energy, but bonds are a tiny fraction of this and so are not
accurate in such a crude theory (18).

2.4. A Great Calculational Leap

Kohn and Sham proposed rewriting the universal functional to approximate only a small piece of
the energy. They mapped the interacting electronic system to a fake noninteracting system with the
same ρ(r). This requires changing the external potential, so these aloof, noninteracting electrons
produce the same density as their interacting cousins. The universal functional can now be broken
into new pieces. Where, in the interacting system, we had kinetic energy and electron-electron
interaction terms, in the Kohn-Sham (KS) system, we write the functional

F = OrbKE + CoulRep + XC, (3)

where OrbKE is the kinetic energy of the fake KS electrons. XC contains all the rest, which
includes both kinetic and potential pieces. Although it is small compared to the total, nature’s glue
(19) is critical to getting chemistry and physics right. The X part is (essentially) the Fock exchange
from an HF calculation, and C is the correlation energy (i.e., that part that traditional methods
such as coupled cluster usually obtain very accurately) (20).

When minimizing this new expression for the energy, one finds a set of orbital equations,
the celebrated KS equations. They are almost identical to the HF equations, demonstrating that
Slater’s idea could be made exact (if the exact functional were known). The genius of the KS
scheme is that, because it calculates orbitals and gives their kinetic energy, only XC, a small
fraction of the total energy, needs to be approximated as a density functional. The KS scheme
usually produces excellent self-consistent densities, even with simple approximations such as local
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Figure 1
Radial densities and potentials for the helium atom (energies in Hartree, distances in Bohr). The red line is
−2/r, the attraction of real electrons to the nucleus. The purple line is the exact Kohn-Sham (KS) potential.
Two fake electrons in the 1s orbital of this potential have the same ground-state density as real helium. The
green line is the potential of a typical approximation [generalized gradient approximation (GGA)], which,
although inaccurate, yields a highly accurate density.

density approximation (LDA), but approximate potentials for this noninteracting KS system are
typically very different from the exact KS potential (Figure 1).

2.5. Popular Approximations for Exchange Correlation

Despite the overwhelming number of approximations available in the average DFT code, most cal-
culations rely on a few of the most popular approximations. The sequence of these approximations
is

XC ∼ XC unif (ρ) (LDA),
∼ XC GGA(ρ, |∇ρ|) (GGA),
∼ a(X − X GGA) + XC GGA (hybrid).

(4)

The first approximation was the third major step in the foundation of DFT in the mid-1960s and
was invented by Kohn & Sham (21). It was the mainstay of solid-state calculations for a generation
and remains popular for some specific applications even today. It is (almost) never used in quantum
chemistry, as it typically overbinds by approximately 1 eV per bond. The LDA (21) assumes that
the XC energy depends on the density at each position only, and that dependence is the same as
in a uniform electron gas.

Adding another level of complexity leads to the more accurate generalized gradient approxima-
tions (GGAs) (22, 23), which use information about both the density and its gradient at each point.
Hybrid approximations mix a fraction (a) of exact exchange with a GGA (24). These maneuvers
beyond the GGA usually increase the accuracy of certain properties with an affordable increase in
computational cost (25). [Meta-GGAs try to use a dependence on the KS kinetic energy density
to avoid calculating the Fock exchange of hybrids (26, 27), which can be very expensive for solids.]
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Figure 2
The number of density functional theory (DFT) citations has exploded (as have ab initio methods). PBE
represents the number of citations of Reference 28, and B3LYP represents the number of citations of
Reference 24. Dark indicates papers using either of these approximations without citing the original papers,
and Other represents citations to all other DFT papers. All numbers are estimates. We note the contrast
with figure 1 of Reference 7, which missed almost two-thirds of these citations.

Figure 2 shows that the two most popular functionals, PBE (28, 29) and B3LYP (24, 30),
comprise a large fraction of DFT citations each year (about two-thirds), even though they are
now cited only about half the time they are used. PBE is a GGA, whereas B3LYP is a hybrid
(24). As a method tied to HF, quantum chemists’ old stomping grounds, and one with typically
higher accuracy than PBE, B3LYP is more often a chemist’s choice. PBE’s more systematic errors,
mathematical rationale, and lack of costly exact exchange have made it most popular in solid-state
physics and materials science. In reality, both are used in both fields and many others as well.

2.6. Cultural Wars

The LDA was defined by Kohn and Sham in 1965; there is no controversy about how it was
designed. However, adding complexity to functional approximations demands choices about how
to take the next step. Empirical functional developers fit their approximations to sets of highly
accurate reference data on atoms and molecules. Nonempirical developers use exact mathematical
conditions on the functional and rely on reference systems, such as the uniform and slowly varying
electron gases. The PBE GGA is the most popular nonempirical approximation, whereas the most
popular empirical functional approximation is the B3LYP hybrid. Modern DFT conferences
usually include debates about the morality of this kind of empiricism.

Both philosophies have been incredibly successful, as shown by their large followings among
developers and users, but each success is accompanied by failures. No single approximation works
well enough for every property of every material of interest. Many users sit squarely and pragmat-
ically in the middle of the two factions, taking what is best from both of their accomplishments
and insights. Often, empiricists and nonempiricists find themselves with similar end products, a
good clue that something valuable has been created with the strengths of both.

To illustrate this idea, we give a brief allegory from an alternative universe. Since at least the
1960s, accurate HF energies of atoms have been available owing to the efforts of Froese Fischer
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Figure 3
Exchange energy (in Hartrees) of atoms from a Hartree-Fock calculation as a function of Z, the atomic
number, and two local density approximation (LDA) X calculations: one with the theoretical asymptote and
the other fitted by the chemist in our story.

(31, 32) and others. A bright young chemistry student plots these X energies as a function of Z, the
atomic number, and notices they behave roughly as Z5/3, as in Figure 3. She is an organic chemistry
student, and mostly cares only about main-group elements, so she fits the curve by choosing a
constant to minimize the error on the first 18 elements, finding EX = −0.25Z5/3. Much later, she
hears about KS DFT and the need to approximate the XC energy. A little experimentation shows
that if

X opt = C0

∫
d 3r ρ4/3(r), (5)

this goes as Z5/3 when Z is large, and choosing C0 = −0.80 makes it agree with her fit.
In our alternate timeline, a decade later, Dirac (33), a very famous physicist, proves that for a

uniform gas, C0 = AX = −(3/4)(3/π )1/3 = −0.738. Worse still, Schwinger (34) proves that insert-
ing the TF density into Dirac’s expression becomes exact as Z → ∞, so that EX → −0.2208Z5/3.
Thus, theirs is the official LDA for X, and our brave young student should bow her head in shame.

Or should she? If we evaluate the mean absolute errors in exchange for the first 20 atoms, her
functional is significantly better than the official one (35). If lives depend on the accuracy for those
20 atoms, which would you choose?1

1In fact, sadly, the young chemist is unable to find a permanent position, and she ends up selling parameterized functionals for
food on the streets. Conversely, the physicists all celebrate their triumph over empiricism with a voyage on a brand new ship,
which has been designed with materials whose properties have been calculated using DFT. Because the local approximation,
as given above, underestimates the magnitude of the exchange energy, the brittle transition temperature is overestimated.
When the new ship sails through icy waters, its hull is weakened and damaged by an iceberg, so all of them drown. (The
interested reader may find more information on the ductile-to-brittle transition in Reference 135 and other works by Kaxiras
and colleagues).
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This simple fable contains the seeds of our actual cultural wars in DFT derivations:

1. An intuitive, inspired functional need not wait for an official derivation. One parameter
might be extracted by fitting, and later derived.

2. A fitted functional will usually be more accurate than the derived version for the cases where
it was fitted. The magnitude of the errors will be smaller, but less systematic.

3. The fitted functional will miss universal properties of a derived functional. We see in
Section 6 that the correct LDA for exchange is a universal limit of all systems, not just
atoms.

4. If one wants to add the next correction to LDA, starting with the wrong constant will make
life very difficult (see Section 6).

3. WHAT IS AT THE FOREFRONT?

3.1. Accurate Gaps

Accurate energy gap calculations and self-interaction errors are notorious difficulties within DFT
(36). Self-interaction error stems from the spurious interaction of an electron with itself in the
Coulomb repulsion term. Orbital-dependent methods often cure most of this problem, but they
can be expensive to run. The so-called gap problem in DFT often stems from treating the KS
gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) as the fundamental gap, but the difference in the HOMO and LUMO of the KS
system is not the same as the difference between the ionization potential and the electron affinity
(36). Ad hoc methods are often used to correct DFT gaps, but these methods require expensive
additional calculations, empirical knowledge of one’s system, or empirical tuning. However, it has
recently been shown that some classes of self-interaction error are really just errors due to poor
potentials leading to poorer densities (37, 38). Such errors are removed by using more accurate
densities (Figure 4).

3.2. Range-Separated Hybrids

Range-separated hybrids (40) improve fundamental gaps calculated via the DFT HOMO-LUMO
gap (41). Screened range-separated hybrids can even achieve gap renormalization when mov-
ing between gas-phase molecules and molecular crystals (42). The basic range-separated hybrid
scheme divides the troublesome Coulomb interaction into long-range and short-range pieces.
The screened version enforces exact conditions to determine where this separation occurs and
incorporates the dielectric constant as an adaptive parameter. This technique takes into account
increased screening as molecules form solids, resulting in reduced gaps critical for calculations
geared toward applications in molecular electronics.

3.3. Weak Interactions

Another classic failing of DFT is its poor treatment of weak interactions (43, 44). Induced dipoles
and the resulting dispersion interactions are not captured by the most popular approximations of
Equation 4. This prevents accurate modeling of the vast majority of biological systems, as well
as a wide range of other phenomena, such as surface adsorption and molecular crystal packing.
GGAs and hybrids are unable to model the long-range correlations occurring between fluctuations
induced in the density. The nonempirical approach based on the work of Langreth, Lundqvist, and
colleagues (45–48) and the empirical DFT-D of Grimme (49, 50) have dominated the advances in
this area, along with the more recent, less empirical approach of Tkatchenko & Scheffler (51, 52).
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Figure 4
When a density functional theory (DFT) calculation is abnormally sensitive to the potential, the density can
go bad. Usually, DFT approximate densities are better than Hartree-Fock (HF) (39), as in Figure 1. Here,
self-consistent PBE results for OH-H2O interactions yield the wrong geometry, but PBE on HF densities
fixes this (38).

4. REDUCING COST: IS LESS MORE?

No matter how much progress is made in improving algorithms to reduce the computational cost
of DFT calculations, there will always be larger systems of interest, and even the fastest calculations
become prohibitively expensive. The most glaring example is molecular dynamics (MD) simulation
in biochemistry. With classical force fields, these can be run for nano- to milliseconds, with a
million atoms, with relative ease. But when bonds break, a quantum treatment is needed, and the
first versions of these were recognized in the 2013 Nobel Prize in Chemistry (53–55). These days,
many people run Car-Parrinello MD simulations (56, 57), with DFT calculations inside their MD
simulations. Although new algorithms and architectures are being leveraged to greatly speed up
ab initio MD, even on desktop computers (58), including these DFT calculations often reduces
tractable system sizes to a few hundred atoms.

Thus, there remains a great deal of interest in finding clever ways to keep as much accuracy as
needed while simplifying computational steps. One method for doing so involves circumventing
the orbital-dependent KS step of traditional DFT calculations. Alternatively, one can save time by
only doing those costly steps (or even more expensive procedures) on a system’s most important
pieces, while leaving the rest to be calculated using a less intensive method. The key to both
approaches is to achieve efficiency without sacrificing precious accuracy.

4.1. Removing the Orbitals

Orbital-free methods (6, 59–63) such as TF reduce computational costs but are often not accurate
enough to compete with KS DFT calculations. Current methods search for a similar solution,
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by working on noninteracting kinetic energy functionals that allow continued use of existing XC
functionals (64). [An intriguing alternative is to use the potential as the basic variable (65, 66) (see
Sections 6 and 7).]

4.2. Embedding

Partitioning and embedding are similar procedures, in which calculations on isolated pieces of
a molecule are used to gain understanding of the molecule as a whole (67). One might want to
separate out molecular regions to look more closely at pieces of high interest or to find a better way
to approximate the overall energy with density functionals. Parsing a molecule into chunks can
also allow for entirely new computational approaches not possible when dealing with the molecule
as a whole.

Partition DFT (68) is an exact embedding method based on density partitioning (69, 70).
Because it uses ensemble density functionals (71, 72), it can handle noninteger electron numbers
and spins (73, 74). The energy of the fragments is minimized by using effective potentials consisting
of a fragment’s potential and a global partition potential that maintains the correct total density.
This breakdown into fragment and partition energies allows approximations that are good for
localized systems to be used alongside those that are better for the extended effects associated with
the partition potential.

Whereas partition DFT uses DFT methods to break up the system, projector-based wave-
function-theory-in-DFT embedding techniques combine wave-function and DFT methods (75,
76). This multiscale approach leverages the increased accuracy of some wave-function methods
for some bonds, for which high accuracy is vital, without extending this computational cost to the
entire system. Current progress in this field has been toward the reduction of the errors introduced
by the mismatch of methods between subsystems. This type of embedding has been recently
applied to heterolytic bond cleavage and conjugated systems (77). Density matrix embedding
theory on lattices (78) and its extension to full quantum mechanical chemical systems (79) use
ideas from the density matrix renormalization group (80, 81), a blazingly fast way to exactly solve
low-dimensional quantum mechanics problems. This shifts the interactions between fragments to
a quantum bath instead of dealing with them through a partition potential.

5. WHAT IS THE UNDERLYING THEORY BEHIND DENSITY
FUNCTIONAL THEORY APPROXIMATIONS?

Given the Pandora’s box of approximate functionals, many found by fitting energies of systems,
most users imagine DFT as an empirical hodgepodge. Ultimately, if we end up with a different
functional for every system, we will have entirely defeated the idea of first-principles calculations.
However, prior to the mid-1990s, many decades of theory were developed to better understand
the local approximation and how to improve on it (43). Here we summarize the most relevant
points.

The joint probability of finding one electron in a little chunk of space around point A and
another in some other chunk of space around point B is called the pair probability density. The
exact quantum repulsion among electrons is then

ElecRep = 1
2

∫
dA

∫
dB

P (A, B)
|rA − rB| . (6)

But we can also write

P (A, B) = ρ(A) ρcond(A, B), (7)
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Figure 5
Illustration of a one-dimensional 10-electron density (solid red line), the conditional density (dot-dashed blue
line) given an electron at A = 2, and its hole density (dashed green line).

where ρ(A) is the density at rA and ρcond(A, B) is the probability of finding the second electron at
B, given that there is one at A. [If you ignore the electron at A, this is just ρ(B), and Equation 6
gives the Coulomb repulsion in Equations 2 and 3.] We write this conditional probability as

ρcond(A, B) = ρ(B) + ρXC(A, B), (8)

where ρXC(A, B) is called the hole around A. It is mostly negative and represents a missing electron
(it integrates to −1), as the conditional probability integrates to N − 1. With a little math trick,
called the adiabatic connection (82, 83), we can fold the kinetic correlation into the hole so that

XC = 1
2

∫
dA

∫
dB

ρ(A)ρXC(A, B)
|rA − rB| . (9)

Because the XC hole tends to follow an electron around (i.e., be centered on A as in Figure 5), its
shape is roughly a simple function of ρ(A). If one approximates the hole by that of a uniform gas
of density ρ(A), Equation 9 above yields the LDA for the XC energy. So the LDA approximation
for XC can be thought of as approximating the hole by that of a uniform gas (43, 84).

Although the XC is roughly approximated by LDA, the energy density at each point in a system
is not, especially in systems of low symmetry. However, from Equation 9, the energy depends only
on the average of the XC hole over the system, and Figure 6 shows such a system-averaged hole
for the helium atom (integrate over A and the angular parts of B in Equation 9). The LDA hole is
not deep enough, and neither is the LDA energy. This is the effect that leads to LDA overbinding
of molecules.

5.1. Generalized Gradient Approximation Made Briefer

The underlying idea behind the Perdew series of GGAs was to improve on the LDA hole (86).
Adding gradient corrections to the hole violates certain sum rules (the negativity of the exchange
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Figure 6
Illustration of system-averaged radial exchange holes for the helium atom (85), weighted by the Coulomb
repulsion, so that the area equals the exchange (X) energy. Compared to accurate Hartree-Fock (HF) (solid
red line), the local density approximation (LDA) hole (dashed green line) is not deep enough, reflecting that the
LDA underestimates the magnitude of the X energy. The generalized gradient approximation (GGA) hole
(dotted-dashed blue line) is substantially better, but a little too deep.

hole and integration to −1, and integration to zero for the correlation hole), so the real-space
cutoff procedure was designed to restore these conditions. This is an effective resummation of
the gradient expansion, producing the numerical GGA. The popular functional PBE was derived
from imposing exact conditions on a simple form (28, 29) but should be believed because it mimics
the numerical GGA. Figure 6 shows how the GGA hole roughly improves on LDA, reducing
typical energy errors by a factor of three.

GGAs not only show how important good hole models can be, they also demonstrate that good
approximations can satisfy different exact conditions, so picking which to satisfy is nontrivial. For
instance, B88 (23), PW91 (87, 88), and PBE (28, 29) give similar values for exchange energy
when densities do not get too small or vary too quickly. However, once they do, each behaves
very differently. Each approximation was sculpted to satisfy different exact conditions in this
limit. Becke decided a good energy density for exponential electronic densities was important.
Perdew and coworkers first thought that a particular scaling behavior was important (89) and then
thought that satisfying a certain bound was better (28). Without a systematic way to improve our
approximations, these difficult choices guide our progress. But starting from a model for the XC
hole is an excellent idea, as such a model can be checked against the exact XC hole (90).

5.2. Exchange-Hole Dipole Moment Method

A recent, parameter-free approach to capturing dispersion is the exchange-hole dipole moment
method (91–94), in which perturbation theory yields a multipole-multipole interaction, and
quantum effects are included through the dipole moment of the electron with its exchange hole.
Using these in concert with atomic polarizabilities and dipole moments generates atomic pair
dispersion coefficients that are within 4% of reference C6 values (95). Such a model has an
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advantage over the more popular methods mentioned in Section 3 because its assertions about
the hole can be checked.

5.3. Random Phase Approximation and Other Methods

Originally put forth in the 1950s as a method for the uniform electron gas, random phase approxi-
mation (RPA) can be viewed as a simplified wave function method or a nonlocal density functional
approach that uses both occupied and unoccupied KS states to approximate the correlation energy.
RPA correlation performs extremely well for noncovalent, weak interactions between molecules
and yields the correct dissociation limit of H2 (96), two of the major failures of traditional DFT
approximations (97).

Although computational expense once hindered the wide use of RPA, resolution-of-identity
implementations (98, 99) have improved its efficiency, making it accessible to researchers in-
terested in large molecular systems. RPA gives good dissociation energy for catalysts involving
the breaking of transition-metal-ligand and carbon-carbon bonds in a system of over 100 atoms
(100). Although RPA handles medium- and long-range interactions very well, its trouble with
short-range correlations invites the development of methods that go beyond RPA. RPA used in
quantum chemistry usually describes only the particle-hole channel of the correlation, but another
recent approach to RPA is particle-particle RPA (101). This approach is missing some correlation,
which causes errors in the total energies of atoms and small molecules. This nearly cancels out in
reaction energy calculations and yields fairly accurate binding energies (102).

RPA and its variations will likely lead to methods that work for both molecules and solids,
and their computational costs will be driven down by algorithmic development. However, RPA
is likely to remain substantially more expensive than a GGA calculation for the indefinite future.
Although RPA methods may rise to fill an important niche in quantum chemistry, producing
comparably accurate energetics to modern functionals without any empiricism, such methods will
not replace DFT as the first run for many calculations. Moreover, as with almost all methods that
are “better” than DFT, there appears to be no way to build in the good performance of older
DFT approximations.

6. IS THERE A SYSTEMATIC APPROACH TO
FUNCTIONAL APPROXIMATION?

A huge intellectual gap in DFT development has been in the theory behind the approximations.
This, as detailed above, has allowed the rise of empirical energy fitting. Even the most appealing
nonempirical development seems to rely on picking and choosing which exact conditions the
approximation should satisfy. Lately, even Perdew and colleagues (103, 104) have resorted to one
or two parameters in the style of Becke to construct a meta-GGA. Furthermore, up until the
mid-1990s, many good approximations were developed as approximations to the XC hole, which
could then be tested and checked for simple systems.

However, in fact, there is a rigorous way to develop density functional approximations. Its
mathematical foundations were laid down 40 years ago by Lieb & Simon (105–107). They showed
that the fractional error in the energy in any TF calculation vanishes as Z → ∞, keeping N = Z.
Their original proof is for atoms but applies to any molecule or solid, once the nuclear positions are
also scaled by Z1/3. Their innocuous statement is in fact quite profound. This very complicated
many-body quantum problem, in the limit of large numbers of electrons, has an almost trivial
(approximate) solution. And although the world finds TF theory too inaccurate to be useful, and
performs KS calculations instead, the equivalent statement (not proven with rigor) is that the frac-
tional error in the LDA for XC vanishes as Z → ∞. XC, like politics, is entirely local in this limit.
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These statements explain many of the phenomena seen in modern DFT:

1. LDA is not just an approximation that applies for uniform or slowly varying systems but is
instead a universal limit of all electronic systems.

2. LDA is the leading term in an asymptotic expansion in powers of � (i.e., semiclassical). Such
expansions are notoriously difficult to deal with mathematically.

3. The way in which LDA yields an ever smaller error as Z grows is very subtle. The leading
corrections are of several origins. Often the dominant error is a lack of spatial quantum
oscillations in the XC hole. However, as Z grows, these oscillations get faster, so their net
effect on the XC energy becomes smaller. Thus, even as Z grows, LDA should not yield
accurate energy densities everywhere in a system (and its potential is even worse, as in
Figure 1), but the integrated XC energy will become ever more accurate.

4. The basic idea of the GGA as the leading correction to LDA makes sense. The leading
corrections to the LDA hole should exist as very sophisticated functionals of the potential,
but whose energetic effects can be captured by simple approximations using the density
gradient. This yields improved net energetics, but energy densities might look even worse,
especially in regions of high gradients, such as atomic cores.

Next, we continue the allegory from Section 2.6. To do so, we subtract the LDA exchange
energy from our accurate ones, so we can see the next correction, and plot this, per electron, in
Figure 7. Now, a bright young chemist has heard about the GGA, cooks up an intuitive correction
to LDA, and fits one parameter to the noble gas values. Later, some physicists derive a different
GGA, which happens to also give the correct value. Later still, a derivation of the correction
for large Z is given, which can be used to determine the parameter (and turns out to match the
empirical value within 10%). The only difference from the original allegory is that this is all true.

–0.10

–0.15

–0.20

0

10 20 30 40 50

Atomic number

(X
 –

 L
D

A
 X

)/Z

B88 correction

PBE correction

Large Z fit

Hartree-Fock
–0.05

Figure 7
The nonlocal exchange energy, exchange minus local density approximation (LDA) X, per electron of atoms
with atomic number Z (compare with Figure 3). The PBE functional tends to the theoretical limit (Z → ∞)
(horizontal green line), but B88 is more accurate for Z < 50 because of fitting (108).
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The chemist was Becke; his fitted functional is B88 (23). The derived functional is PBE (28), and
the derivation of the parameter in B88 is given in Reference 108.

This true story validates both Becke’s original procedure and the semiclassical approach to
density functional approximation. We note that even the correction is evaluated on the TF density
to find the limiting behavior. The PBE exchange functional also yields the leading correction to the
exchange energy of atoms. PBEsol was created by throwing this away and restoring the (different)
gradient expansion for slowly varying gases (109).

6.1. Semiclassical Approximations

New approximations driven by semiclassical research can be divided into density approaches and
potential approaches. In the density camp, we find innovations such as Armiento & Mattsson’s
(110–112) approximations, which incorporate surface conditions through their semiclassical ap-
proach. In the potential functional camp, we find highly accurate approximations to the density,
which automatically generate approximations to noninteracting kinetic energies (65, 66, 113).
Because these approaches use potential functionals, they are orbital-free and incredibly efficient
but apply only in one dimension (see also Section 7). Current research is focused on extension to
three dimensions and semiclassical approximations in the presence of classical turning points, as
well as semiclassical approximations to exchange and correlation energies.

7. WARM DENSE MATTER: A HOT NEW AREA?

Although we do not live at icy absolute zero, most chemistry and physics happens at low-enough
temperatures that electrons are effectively in their ground state. Most researchers pretend to be
at zero temperature for their DFT work with impunity. But some people, either those working
at high-enough temperatures and pressures or those interested in low-energy transitions, cannot
ignore thermal effects. Those of us caught up in these warmer pursuits must tease out where
temperature matters for our quantum mechanical work.

In 1965, Mermin (114) proved a finite-temperature version of the Hohenberg-Kohn theorem,
and the finite-temperature LDA was shown in the original KS paper (21). However, many peo-
ple continue to rely on the zero-temperature approximations, although they populate states at
higher energy levels using finite-temperature weightings. Figure 8 shows how these high-energy
populations affect electronic densities as temperatures rise. Better understanding and modeling
of the finite-temperature XC hole could lead to improvement in some of the finer details of these
calculations, such as optical and electronic properties (115).

7.1. Warm Dense Matter and Molecular Dynamics

One area that has seen great recent progress with DFT is the study of warm dense matter (WDM)
(116, 117). WDM is intermediate to solids and plasmas, inhabiting a world where both quan-
tum and classical effects are important. It is found deep within planetary interiors, during shock
physics experiments, and on the path to the ignition of inertial confinement fusion. Lately, the
use of DFT MD has been a boon to researchers working to simulate these complicated mater-
ials (118–124). Most of these calculations are performed using KS orbitals with thermal occu-
pations, ignoring any temperature dependence of XC, in hopes that the kinetic and Coulomb
energies will capture most of the thermal effects. Agreement with experiment has been excellent,
although there is great interest in seeing if temperature-dependent XC approximations affects these
results.
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Figure 8
The density of a single electron in a flat box spreads toward the infinite walls as temperatures rise.

7.2. Exact Conditions

Exact conditions have been derived (115, 125–127) for finite-temperature systems that seem very
similar to their ground-state counterparts. However, a major difference in thermal systems is that
when one squeezes or compresses the length scale of the system, there is an accompanying scaling
of the temperature. This is further reflected in the thermal adiabatic connection, which links the
noninteracting KS system to the interacting system through scaling of the electron-electron inter-
action. At zero temperature, this allows us to write the XC energy in terms of the potential alone,
as long as it is accompanied by appropriate squeezing or stretching of the system’s length scale (see
Section 5). With the temperature-coordinate scaling present in thermal ensembles, the thermal
adiabatic connection requires not only length scaling, but also the correct temperature scaling.

7.3. Orbital-Free Methods

Orbital-free methods, discussed in Section 4, are of particular interest in the WDM community.
Solving the KS equations with many thermally populated orbitals is repeated over and over in
DFT MD, leading to prohibitive cost as temperatures rise. The focus on free energies for thermal
ensembles has led to two different approaches to orbital-free approximations. One approach uses
two separate forms for kinetic and entropic contributions (127). Following this path, one can
make approximations either empirically (128) or nonempirically (129). Another approach enforces
a particular type of response in the uniform gas limit (130). If one wishes to approximate the
kentropy, the free energy consisting of kinetic energy and temperature-weighted entropy (115),
as a whole, one can use temperature-dependent potential functional theory to generate highly
accurate approximations from approximate densities generated semiclassically or stochastically
(131, 132). Figure 9 shows the accuracy of a semiclassical density approximation, which captures
the quantum oscillations missed by TF theory and still present as temperatures rise.

8. WHAT CAN WE GUESS ABOUT THE FUTURE?

The future of DFT remains remarkably bright. As Figure 2 shows, the number of applications
continues to grow exponentially, with three times as much activity than previously realized (7,
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Figure 9
Eight electrons in the potential −2 sin2(πx/10) in a one-dimensional box. At zero temperature ( gray), the
density exhibits sharp quantum oscillations, which wash out as the temperature increases (black line). This
effect is much weaker near the edges. Thomas-Fermi (TF) theory ( green line) is used in many warm
simulations but misses all oscillations, vital for accurate chemical effects. The orbital-free, finite-temperature
potential functional approximation (PFA) (red line) of Reference 125 is almost exact here.

figure 1). Although empiricism has generated far too many possible alternatives, the standard
well-derived approximations continue to dominate.

To avoid losing insight, we need to further develop the systematic path to approximations,
which eschews all empiricism and expands the functional in powers of �, Planck’s constant. This
will ultimately tell us what we can and cannot do with local-type approximations. There is huge
room for development in this area, and any progress could impact all those applications.

Meanwhile, new areas have been developed (e.g., weak interactions) or are being developed
(WDM). New methods, such as the use of Bayesian statistics for error analysis (133) or machine
learning for finding functionals (63, 134), are coming online. Such methods will not suffer the
limitations of local approximations and should be applicable to strongly correlated electronic
systems, an arena where many of our present approximations fail. We have little doubt that DFT
will continue to thrive for decades to come.
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