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INTRODUCTION

Intermolecular interaction energy is defined as the difference between the
total energy of a combined system and that of its components. Compared to the
total energies of a molecule or its individual atoms, the interaction energy is a
small effect, being usually one part in a hundred thousand or less. There are
essentially two ways to obtain that energy: by calculating it directly, or by
obtaining the difference from calculations on all the pieces. The first approach
involves perturbation theory.!=3 At large intermolecular separations, it works
well, but at small separations difficulties arise from the overlap of electron
distributions, modified by the antisymmetry of the electron wavefunction. Be-
cause of antisymmetry, it is necessary to develop a non-Hermitian perturbation
theory to include nonlocal effects and use nonorthogonal orbitals. In a non-
Hermitian theory, the order of operations is critical and many standard quan-
tum mechanical symmetries are not obeyed. A nonlocal operator like the ex-
change operator depends on the function on which it acts. If extreme care is not
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taken with these complicated operators, the results can become complex and
nonsensical. Whereas those problems can be overcome, the theory is compli-
cated and thus not widely used. The reader is referred to the work of Mayer et
al.*~¢ for a more detailed explanation of terms and methods.

The second way to obtain the interaction energy is the more traditional
method that is sometimes called the supermolecular approach.” In this method,
the interaction energy of, say, a dimer AB {the supermolecule) is obtained by
directly subtracting the energy of the isolated monomers, A and B, from the
total energy of the dimer, as follows:

AE,

n

. = E(dimer) — E(mon,) — E{mong) [1]

where E{dimer) is the total energy of the dimer obtained using the dimer basis
set {AB}, and E(mon,) and E(mong) are the energies of the monomers using
their respective basis sets {A} and {B}. Both the type and the size of the basis sets
used to represent a system will determine the functional space in which all
electronic properties of the system are evaluated. In practice, however, one is
actually describing the dimer by means of functional space different from the
functional space used to describe each of the separate monomers, because the
energy for the monomers is obtained through the use of their own basis sets
individually (A and B, respectively), whereas the energy for the dimer is ob-
tained by means of a basis set for the dimer (AB), which could be the combined
basis sets of the monomers.

The supermolecular approach may be visualized in a manner similar to
that applied to the formation of a hydrogen molecule. At large internuclear
distances, the monomers interact very weakly and thus are not really disturbed
by the presence of each other. In a simplistic view, as the two monomers ap-
proach each other to form the dimer, the first monomer feels the presence of the
second monomer through its orbitals; that is, the basis set of one monomer
improves the basis set of the second {in essence providing more room for the
electrons in that monomer to move about), thus producing an added stabiliza-
tion to the electrons of the first monomer. And, likewise, similar stabilizations
apply to the second monomer. The effect on the energies of the combined basis
sets that now describe the monomers has been called basis set extension (BSE)
effect.® In short, the unbalancing of the basis sets creates an artificial lowering of
the energy for each monomer as the dimer forms, and this phenomenon is
known as basis set superposition error (BSSE). The artifact arises when the
energy of the dimer is compared at separation distances where each partner’s
orbitals play an important role in stabilizing the electron distribution of the
other partner. At infinjte separations, of course, the partner orbitals do not
affect each other.

Historically, this effect was discovered by Kestner® while trying to explain
the spurious minimum observed in the potential energy curve for a helium
dimer. Later Liu and McLean!? gave it the name BSSE. “Basis set superposition
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error” is an appropriate name because the issue is really how basis sets superim-
pose when atoms interact with each other.

BSSE is important because it arises whenever computational chemists try
to model the interaction of two or more species. A literature survey indicates
that over 300 papers using or calculating BSSE were published from 1991
through 1997. There have also been three especially relevant reviews. The first
two were by van Lenthe, van Duijneveldt-van de Rijdt, and van Duijneveldt,
who published a very careful analysis of weakly bound systems with special
emphasis on BSSE corrections in 1987, followed by a related one in 1994.12
The third review, a more practical review by Scheiner,!3 focused on calculating
hydrogen bonds by ab initio methods and gave a long discussion of BSSE effects.
In addition, Gutowski and Chalasinski wrote an excellent critical review, com-
paring various approaches to eliminating the error.’* While this chapter was
being prepared, another review by van Duijneveldt'® appeared which empha-
sizes the practical issues of evaluating and eliminating BSSE.

To use a standard quantum chemistry program, one must choose a basis
set or let the program make that decision based on the programmer’s knowl-
edge and preferences. The selection of a basis set has many consequences.”>1%1¢
Not only does it limit the accuracy of the energy, but it can affect the accuracy of
other predicted properties. Serious complications can arise when one takes the
difference between two approximate ab initio calculations. Not only does the
answer have errors due to the limitations of the finite basis set, but very often
the two calculations may not have the same magnitude of error even if the same
basis set is used. Using a finite basis set to represent a wavefunction always
introduces errors, sometimes large and sometimes small.

The first part of this chapter defined the BSSE effect and explained why it
occurs. The remainder of this chapter discusses the size, importance, and accu-
racy of BSSE corrections, and finally gives practical guides for making correc-
tions for the effect within the standard computer packages now available.

ORIGIN AND MAGNITUDE OF BSSE

One of the earliest cases of an extreme BSSE error was found by Kestner”
in the calculation of the helium-helium interaction using Slater-type orbitals
(STOs), all with the same exponent. Symmetry restriction at the Hartree—Fock
level prevents the 2p and 2s orbirals from mixing in the atom, but they do mix in
the molecule. Therefore when this basis set is used for the atom, the 2p func-
tions do not contribute to the ground state energy. But, in the diatomic, where
the symmetry is not spherical, the functions can contribute and thus lower the
dimer energy rather significantly. Consequently, there is a large minimum in the
interaction energy for the helium dimer even at the Hartree-Fock level, con-
trary to what is observed experimentally. This extreme example dramatically
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illustrates the BSSE and the fact that, when one is using the supermolecule
method of calculation, the space of the basis sets available to the dimer is always
larger than those available to the atom.

Let us first review the theory of representation of arbitrary functions in
terms of a generalized basis set. There are two general criteria for evaluating an
approximate function: point-by-point determination and integral determina-
tion. With the former, the approximate and the correct functions are made to
agree as closely as possible at a finite number of points in function space. With a
large number of points and enough adjustable parameters and functions, the
approximate solution can be fit arbitrarily close to the exact solution. This is the
type of evaluation used in the simple least-squares fits where the square of the
difference between the exact and approximate functions is made as small as
possible, The other type of determination, which is more widely used, involves
matching some integral of the approximate solution as closely as possible to
that of the exact solution. This is essentially what is done in such applications as
Fourier analysis or any expansion in terms of special functions. Both these
evaluations work well, and the errors can be minimized to any limit if the exact
answer is known and if we have a complete orthonormal set of functions to
work with. When we try to solve for the wavefunction of an atom or orbital,
however, we do not know the exact answer, nor do we have a complete set of
functions to use in the expansion. In most calculations, we have a property
(total energy) we want to minimize. It is important, then, to emphasize that the
function used is the total energy of the system, not the interaction energy.

In any use of an integral minimization to fit or approximate some func-
tion, there are biases built into the system. Some of these are due to the nature of
the basis set used, but some are due to the nature of the function being mini-
mized. From the theory of special functions,'” we know that the normalization
and orthogonalization integrals for every special function have their unique
weighting factors; that is, they emphasize different regions of space. In quantum
chemistry the variational principle states that wavefunctions can be determined
by minimizing the energy of the system. So when we use energy as our “weight-
ing factor” or minimization function, we are locked into emphasizing the por-
tions of the wavefunction that a priori contribute most to the energy, namely,
the areas that have the highest electron density, i.e., regions closest to the nuclei.
Likewise, we are likely to have increasingly poor accuracy in the areas that
contribute least, namely, the areas with lowest electron density. This condition
plays an important role in deciding whether BSSE effects are large or small in
typical problems.

Returning to the BSSE calculations themselves, let us consider whar would
happen if we were to calculate the energy of a simple but real system, such as
H,. Let us also start our modeling by using a simple basis set, namely, one
function per atom. When we determine the energy of each atom, we use one
function, but when we calculate the energy of a diatomic we use two functions,
one centered on each nucleus. If the one function were the exact solution, the
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atomic energy would be exact. That is, if one function is all that is needed for
the exact calculation, the energy of the atom calculated with two functions
would be identical to that calculated with one function no matter where the
functions were located or what their functional form; the energy would not be
changed. However, if the one function is only an approximate representation,
as we know it usually is, then the second function could make up for some of the
deficiencies of the first, i.e., the second function could fill in those regions of
electron density poorly approximated by the first function. Thus when the
energy is calculated with both functions, it is lower than that calculated with
but one function. However, when we calculate the energy of the molecule, both
functions are always used.

Consider now what happens if we try to determine the difference in
energy of the atoms and the molecule. The answer will depend on how the
atomic energy is determined, i.e., whether one or two functions were used for
each atom in this case. Which way is correct? The answer is not obvious. Why
would we use a basis set for an atom that contains functions from another
center? The reason is that we would be using the same basis set for both the
atomic and the molecular system, and consequently we would be consistent.

However, there is a problem. Recall that if we expand an arbitrary func-
tion in terms of orthogonal functions, those functions do not duplicate each
other’s effects. Considering spherical harmonics as an example of an orthogonal
set of functions, expansion by means of the standard methods of any angular
function in terms of s, p, and d functions assures that all spherical effects are in
the s component. When one adds a p or d function to the basis set, one does not
modify the spherical component of the function. Regardless of how many basis
functions of higher angular momentum one uses, the spherically symmetric
component is not modified. Returning to the diatomic problem, the two func-
tions, one on each center, are not orthogonal, and in fact they overlap and
duplicate some of each other’s effects. If the two centers are widely separated,
this duplication is small, so the effect on the interaction energy is less relevant.
At separations of chemical interest where we need to correct for basis set effects,
the two functions do overlap significantly. But another problem is associated
with our use of two functions for both the atomic and the diatomic calculation,
which we address later under the issue of overcorrection.

It should be clear already that the error will vary with the complexity of
the system. The BSSE is usually small for H, because the hydrogen atom can be
approximated by a few terms {one, if Slater-type orbitals are used), but if several
Gaussian functions are used, as is common there can be substantial errors. A
better example for this turorial is the calculation of the binding energy of a
larger diatomic such as F,. Substantial error can result from using a simple basis
set of 1s, 2s, and 2p atomic orbitals, each represented by bur a few functions
when used to approximate the complicated molecular orbitals of this diatomic.
The error in the energy of interaction between two F atoms can be very large if
the basis set is not large enough.
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The BSSE is difficult to calculate accurately, We know there will be a BSSE
for any finite basis set, but most of the time we do not know its magnitude.
Later in this chapter we will discuss the counterpoise method invented by Boys
and Bernardi,'®!® a common method to estimate the error using basis sets from
both centers to calculate both the atom and the diatomic. The method often
works well, but it does have an inherent error. The error is the following: what
we desire is really the energy of, say, the diatomic and the energy of the separate
atoms calculated with the same functions as used by the diatomic. In our
hydrogen molecule example, the occupancy of each atomic function from its
own center is not exactly one because the functions overlap. So we should use
only part of the atomic function from the other center in our calculations of the
atomic energy to get an absolutely equivalent basis for both atom and molecule.
That proves to be almost impossible to do except in certain cases that are
explored later.

Magnitude of Error

The magnitude of the BSSE effect is affected by the size of the basis sets
used, whether localized or bond orbitals are used, the type of system treated,
and the level of calculation (Hartree-Fock or post-Hartree—Fock).

If the size of the basis set is small, the BSSE might be small as well, because
the basis functions are fairly well localized on their respective centers and hence
cannot contribute much to the atomic energy of other centers. Remember thar a
less-than-complete basis set attempts to explain the regions of higher electron
density near the nuclei first, thus small basis sets underestimate the overlap
density. This means that the BSSE at the Hartree—Fock level might be large.
However, with small basis sets, the BSSE at the higher levels of theory could be
small because there are probably insufficient functions to provide the flexibility
needed to model the correlation energy {assuming either a perturbation ap-
proach like Meoller—Plesset or a configuration interaction calculation using
virtual orbitals??). However, the absolute values of the total energies from such
simple calculations are horrendously bad. At the other extreme, there isno BSSE
with a basis set approaching completeness. But usually we cannort reach such
limits even at the Hartree-Fock level. Obviously then, for intermediate-sized
calculations just where we desire good, relatively accurate interaction energy
numbers, the BSSE will be most important and must be evaluated.

One way to help a basis set have smaller BSSE is to use localized orbitals or
bond orbitals. These functions should have inherently less overlap with adjacent
atomic sites. We will explore this in more detail later, but the issue is often
complicated by problems in generating these localized functions and calculating
molecular properties.

From the preceding considerations, it is clear that some problems are
inherently more sensitive to BSSE than others. One of the primary factors
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leading to such errors is diffusiveness of the outer orbitals in the system. Any
anionic state, which usually requires diffuse, extended basis functions, is very
sensitive to basis set effects, and generally the more weakly bound the anion, the
more serious the BSSE effect. Extreme cases also occur with the weakly bound
states of polar neutral molecules and in studies of excess electrons in fluids or
clusters. For these and related systems, the errors occur in two ways. First, the
small-exponent basis functions {diffuse functions) one is forced to have in the
basis set can overlap strongly with adjacent molecules or atoms and thus con-
tribute to the other system’s energy. Second, the anion’s own basis set usually is
not large enough, so the outer electrons often need to borrow electron density
from orbitals on the adjacent atom. It is absolutely essential to correct for the
BSSE, or one will find unusually large binding energies for the anion and strange
effects of other sorts, such as unusual geometries for the anion. There are many
calculations in the literature that have not corrected for these effects and have
overly stable anionic species and often extremely distorted molecular geome-
tries, which originate because the system tries to supply extra electron density
by bringing atoms closer in an attempt to contribute the missing electron den-
sity necessary for the anionic state.

The magnitude of the error in an ab initio calculation also depends on the
level of the calculation. There are serious BSSEs when electron correlation is
included. In general, the errors at the Hartree~Fock level are less severe than
those at higher levels of electron correlation. This is primarily due to the mixing
of higher (virtual) orbitals into the wavefunction by either the perturbation or
configuration interaction (CI) approach. Those virtual orbitals are required to
be orthogonal to the occupied orbitals if they arise from a calculation such as
Hartree—-Fock. Because they are orthogonal, the virtual orbitals are forced to be
larger, and larger orbitals have larger overlaps, with a concomitant increase in
BSSE effects. In fact, even with very large basis sets it is difficult to remove the
BSSE when one is using methods such as high order perturbation theory, CI, or
coupled clusters to include electron correlation, It is expected that the BSSE
effects would be smaller in post-Hartree-Fock methods when one is using
localized orbitals or wavefunctions explicitly based on the interelectronic coor-
dinate, the so-called r;, methods. Unfortunately, these are often hard to imple-
ment, but there has been some progress using localized orbital methods and
localized basis sets.

BSSE exists for basis sets of all types and even for approximate or alterna-
tive Hamiltonians such as semiempirical forms or density functional methods. It
is also not negligible if Slater-type functions are used; but the magnitude is often
less in these circumstances because the outer regions of the wavefunction are
usually better represented than with Gaussians.?! Likewise for various approxi-
mate Hamiltonians, the errors can be large or small. So, for example, since
using exchange correlation functions in density functional calculations does not
require an expansion in terms of virtual orbitals to obtain some electron cor-
relation, there is a relatively small BSSE for the correlation effect in those
calculations.
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ATTEMPTS AT AN EXACT THEORY

There have been several attempts to develop methods that will eliminate
the BSSE a priori and not a posteriori, as do most of the methods discussed later.
In all a priori cases, operators are set up which eliminate the extraneous con-
tributions of the atomic centers to the total wavefunction, consistent with the
overall antisymmetry. Those operators are often quite complex and make
calculations more lengthy.

Mayer, in a series of papers, developed a theory called the chemical
Hamiltonian approach (CHA), which was based on observables, such as charge
densities. Beginning with two 1983 papers,* he developed a non-Hermitian
perturbation theory that was able to separate out the energy components that
comprise the BSSE. He was able to show that there are both over- and undercor-
rection effects, and later we demonstrate that overcorrection typically is small
in most cases. Using a complete analysis of a four-orbital, two-electron model,
Mayer and Turi?? were able to separate out and display all the BSSE terms.
Their paper contains the most extensive discussion of the origins of BSSE and
the most elaborate presentation of the theory.

Calculations have been performed by Mavyer, Surjan, and their coworkers
on small systems such as He,,??~%* (LiH),,** (H,0),,%* and (HF),.2* Mayer
and Vibo’k also developed a separate self-consistent field (SCF) theory that
excluded BSSE effects,?® and Maver et al. recently applied the CHA approach
to density functional theory.?®

In 1991 Sadlej?” proposed another perturbation theory that is Hermitian
but requires some major constraints on the wavefunctions. This method must
be slightly modified in real problems to make sure that the wavefunctions of the
subsystem descriptions are not made poorer by the process.?®2”

Another method, by Cullen,? uses the monomer’s own basis set, which is
a very localized valence bond description. This method is complicated in its
implementation and also does not include the important charge transfer effects
in its treatment.

There have been several critical analyses of these methods. Gutowski and
Chalasinski* compared the last three approaches described above to the stan-
dard counterpoise corrections, discussed next. They found that the simple
counterpoise corrections were simpler to calculate and were generally more
accurate, The review by van Duijneveldt et al.!? discusses these various ap-
proaches and provides some numerical tests as well, In general, these authors
strongly support the use of the counterpoise procedure.

At the post-Hartree—Fock level, Wind and Heully®' have projected out
the BSSE effect in CI theory. In calculations on the interaction of a hydrogen
molecule and a helium atom, the authors found that the results were similar to
those of the counterpoise method. Muguet and Robinson®? more recently pro-
posed a localized approach allowing not only energy calculations, but various
molecular properties to be calculated with none of the BSSE complications,
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again by modifying the operators used. The latter involves an iterative matrix
procedure.

COUNTERPOISE CORRECTION
METHOD

The most popular procedure of accounting for the BSSE effect,!1~1> and
possibly the most accurate one, was proposed almost three decades ago by Boys
and Bernardi!® and first applied by Jansen and Ros.?? The procedure, known as
the counterpoise procedure (CP), is basically an a posteriori correction to the
interaction energy aimed at improving this energy when BSE effects are con-
sidered for the monomers. In the CP, the interaction energy of a dimer is
obtained as the difference between the dimer and monomer energies except that
all these energies are evaluated using the same basis sets, i.e., the dimer basis sets
are used for the dimer as well as for each monomer. Thus, the energy of an
isolated monomer is calculated by means of a basis set composed of the mono-
mer’s basis set plus its partner’s basis set. The additional basis functions are also
known as ghost orbitals, because only the basis sets will be added but no
electrons or nuclear particles for the second monomer are included in the
calculation of the first monomer’s energy.

The CP has been applied to the study of a wide variety of systems, includ-
ing weak interacting systems such as van der Waals complexes,*~*° hydrogen
bond complexes,’?*1-43 and tight interactions (covalent bonds) such as mo-
lecular systems like N,.**%° In fact, it is now common practice to use some
form of CP correction to account for BSSE whenever interaction energies are
considered.

The use of the CP correction has generated some controversy related to
the use of a full set of ghost orbitals (occupied and virtual) to obtain the BSE
energy of the monomers [referred as full counterpoise procedure (FCP)]. Con-
troversy also surrounds a slight variation of the CP in which only the virtual
orbitals of the second monomer are used to evaluate the energy of the first
monomer, and vice versa. This modification is known as the virtual counter-
poise procedure (VCP),*¢47 Some arguments supporting this modification are
as follows:

1. Use of the FCP approach produces an overcorrection, and thus interaction
energies are too repulsive. This argument was used extensively to explain
some of the early results. One should stress that the vast majority of cases in
which interaction energies were considered to be too repulsive due to the
application of the FCP were carried out using small basis sets. Later it was
realized that the overcorrection was mainly due to the improper description
of the whole supersystem.
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2. The Pauli exclusion principle should prevent one monomer from fully em-
ploying the full basis sets of the other monomer in the dimer,*® If the FCP is
applied, there seems to be a violation of the Pauli exclusion principle be-
cause the already occupied orbitals will not be able to accommodate more
electrons.

3. The already occupied orbitals on one monomer will not contribute much to
the energy lowering of the second monomer.

We will discuss in some detail a few of the approaches used to prove or
disprove the validity of the FCP. It is important to note that in many studies,
BSSE has been incorrectly blamed for not reproducing a value of the interaction
energy close to the experimental value. As stated by Van Lenthe et al.,'? the FCP
does, in fact, eliminate the BSSE for the basis sets being used. It does not,
however, correct for the inadequacy of the basis sets. Furthermore, one should
not expect to obtain a particular value for the interaction energy such as the
experimental value or some Hartree—Fock limit value, just because the energies
are being corrected for the BSSE. The CP correction is supposed to correct for
BSE effects, but it will not correct for the use of finite basis sets.

In general, it is agreed that the FCP approach is a good correction to the
energy, but an overcorrection may be introduced when small basis sets are
used.?’~3¢ Nevertheless, the size of the overcorrection is small, and it is easily
fixed by increasing the size of the basis set. In fact, it has been shown that this
overcorrection decreases rapidly with basis sets size, even faster than other
errors also introduced by small basis sets. Selection of the basis sets that prop-
erly describe the properties of the system being studied are perhaps more impor-
tant than the size of the overcorrection. This topic is discussed later in the
section about basis sets recommendations.

It has been widely accepted that the BSSE at the self-consistent field (SCF)
level can be eliminated or reduced drastically if large enough basis sets with
additional diffuse and diffuse polarization functions are added.**->° Examples
are presented below (see Case Studies section). It has also been shown that the
BSSE is larger at correlated levels, and thus several studies!21%34=41 have been
conducted, mainly at the second-order Meller—Plesset level, to try to prove or
disprove that the FCP does or does not produce an overcorrection to the inter-
action energy.

Energy Decomposition

Let us briefly describe a popular approach used to decompose the interac-
tion energy into its components according to the type of interactions between
monomers. In the theory of intermolecular forces, it is of interest to identify the
physical forces that hold the two monomers together.’! First, each monomer
has associated with itself an electronic distribution, which produces an electric
field around the monomer. Therefore, when the two monomers approach each
other, their electric fields interact via a Coulombic force that may be attractive
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or repulsive according to the orientation of the two fields. This Coulombic
interaction is usually denoted “electrostatic energy™ (E.;).

A second component of the interaction energy arises from the quantum
mechanical requirement that the wavefunction of any system be antisymmetric
with respect to interchange of any of the electrons. The interchange of one
electron from monomer A to monomer B produces the so-called exchange
energy (E,). The combination of E_ and E_ is also known as the Heitler—
London energy.

Another aspect of intermolecular interactions is that as one monomer
approaches the other one, the electric field of one perturbs the electron density,
producing an electron redistribution in the other. This is a stabilizing effect,
and it is known as the induction energy (E, 4). This term may be divided
into two other terms if one considers dividing the electrons and space accord-
ing to whether they belong to monomer A or monomer B. On one hand,
the electrons belonging to monomer A can redistribute from their original
location to some unoccupied space still defined as “A space.” This is known as
polarization (P). On the other hand, electrons on monomer A can redistribute
to space defined for monomer B, thus producing a charge transfer (CT) from A
to B.

Finally, one or more electrons from monomer A can be excited to an
unoccupied orbital coupled with a similar excitation for one or more electrons
on monomer B. These multiple excitations are accounted for in correlated
calculations and contribute a stabilization typically referred to as dispersion
energy (E;,,). No matter what system is being studied, one has to properly
represent these four major components of the interaction energy”->? as sum-
marized in Eq. [2].

AEint = Eel + Ex + Eind + Edisp (2]

Evaluation of Polarization and Charge
Transfer Terms

We shall begin by considering an early study aimed at showing that the
FCP indeed produced an overcorrection to the interaction energy. Collins and
Gallup®? compared the overcorrection results from FCP and VCP. In this study
the CP-corrected (FCP and VCP) SCF energies for a series of van der Waals
complexes involving He and H, were calculated. The idea was to examine the
so-called P+CT (polarization + charge transfer) component of the interaction
energy. This component normally arises from the changes in the subsystems as
they approach one another. P+CT was defined in terms of the SCF energy for
the dimer, the CP correction, and a Heitler-London type of dimer energy.>*
Collins and Gallup analyzed their results from the perspective that the P+CT
term should be less than zero because, for this term to have any physical mean-
ing, its contribution to the interaction energy (induction energy in Eq. [2])
should be negative (stabilizing). A positive value was taken as an indication that
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the CP correction produced an overcorrection. It was found that the application
of FCP approach to their calculation always produced a positive value, whereas
the application of VCP correction did not. These results were taken as evidence
that the VCP will produce better results than the FCP.

Gutowski et al.>® subsequently questioned Gallup’s approach; using a
similar type of approach, they redefined the P+CT term into the monomer
energies, the first-order exchange-repulsion and electrostatic interaction ener-
gies.>* Using this P+CT term, Gutowski’s group was able to show that when a
small set of basis functions is used the VCP approach will also produce positive
values for this P+CT term. It was concluded that with appropriate basis sets,
none of the components of the interaction energy is better represented by the
use of VCP or FCP.

Increased Functional Space

As we mentioned earlier, the BSSE depends on a variety of issues, one of
which involves the number of basis functions used, and the kind. Tao and
Pan?%3¢ used a simplistic approach in which the basis sets were increased by
adding several sets of polarization functions (d and f). They tried polarization
functions with tight (large) exponents and also the addition of both diffuse
polarization functions and very diffuse functions. The idea behind this ap-
proach was to improve the description of the short-range region near the nuclei
by adding diffuse functions and to also improve the long-range regions by
adding polarization functions. They calculated AE and AE‘“?) at various levels
of correlation (MP2, MP4) for a neon dimer system.

Tao and Pan wanted to obtain an interaction energy close to a preset value
obtained previously by correcting the interaction energy with the FCP correc-
tion. They attempted to define an expression for the overcorrection based on an
artificial basis set limit. This limit was to be given by an assumed saturated set of
basis functions. The overcorrection was obtained by adding to a previously
chosen set of basis functions either an sp function (s and p functions that share
contraction coefficients for computational efficiency) or a diffuse d function and
finding the difference between the energies. They found that only when large
enough basis sets are used is FCP a valid approach to accounting for BSSE effects
at correlated levels. Tao and Pan claimed that when small basis sets are used, an
overcorrection is introduced, and this overcorrection seems to vanish as the size
of the basis sets is increased. In fact, the overcorrection vanishes faster than
other errors introduced by the inadequacy of the basis sets. They concluded that
the addition of both diffuse polarization functions and additional diffuse func-
tions is more important than the lone addition of tight polarization functions.

Localized Orbital Approach

Interaction energies are routinely obtained by means of a delocalized
molecular orbital approach. That is, all the occupied and virtual orbitals that
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form the two subsystems are mixed, to form a function that is not localized at
one atomic center. However, to properly analyze and avoid any possible over-
estimation of BSSE in the CP method, it is desirable to maintain the local
character of the monomers. In the localized orbital approach, the orbitals on
each subsystem are primarily composed of the atomic orbitals of that center to
facilitate the identification of virtual and occupied orbitals within each sub-
system. Therefore, contributions of the occupied orbitals may be readily elimi-
nated in the CP by using only virtual orbitals. It is also expected that BSSE errors
might be smaller with these more localized orbitals.

Yang and Kestner®##! used a variation of the localized orbital method to
obtain the components of the interaction energy for a series of dimers. They
wanted to be able to evaluate the BSSE explicitly. In their approach the localized
pair correlation®” was used to decompose the second-order correlation en-
ergy into its components. There are several advantages of using localized orbi-
tals to evaluate CP corrections. For instance, the localized orbital method uses
only the best orbitals available for the dimer. The method can handle large
orbital overlaps between monomers, and the localized orbitals of the dimer
depend on internuclear separation. As shown by Yang and Kestner, the second-
order correlation energy can be expressed in combinations of “inter” and “in-
tra” contributions for occupied orbitals on the monomers and/or the dimer. In
this way, the overcompensation—as named by the authors—due to a particular
monomer was given by an expression defining the energy of this monomer
using both its occupied and virtual orbitals in addition of the whole set of ghost
orbitals (from the second monomer) subtracted from the energy for the same
monomer obtained by means of its whole set of basis functions and only the
virtual orbitals of the ghost atom, represented as follows:

overcompensation = [EX{AB,) - E4{AB}] + [E}{A B} - EB{AB}]  [3]

where E4 is the second-order contribution from monomer A to the energy, {AB)
represents the full set of functions for monomer A or monomer B, and A, and
B, represent only virtual orbitals for monomer A or B, respectively. The authors
found that the FCP correction does overcorrect the interaction energy at the
MP2 level, although it was claimed that this overcorrection is not large enough
to affect most intermolecular potentials. This is an interesting result because, as
far as we are aware, no one has refuted the applicability of the method to
evaluate the BSSE effect.

Pulay®®>? developed a method aimed initially at reducing the computa-
tional cost of obtaining the complete correlation energy by means of modest
basis sets based on localized orbitals. It was mentioned that, when correlation is
included, BSSE effects remain significant even with the use of large, augmented
basis sets. Pulay applied his local correlation method to investigate the size and
effects of BSSE at correlated levels for the water dimer.®® Pulay calculated
intrapair correlation energies using localized orbitals. Weakly interacting elec-
tron pairs (at long distances) can be either neglected or treated at lower levels of
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theory. On the other hand, strongly interacting pairs are given more weight in
the calculations. Another feature in Pulay’s method was the possibility of trun-
cating the virtual space by means of a “local basis,” which is basically a sub-
space of the virtual space, usually close in energy to the orbitals to be correlated.
In his study of the water dimer,®® Pulay was able to obtain accurate results that
may be free of BSSE effects.

Many-Body Perturbation Theory Versus
Symmetry-Adapted Perturbation Theory

In the two recent reviews on the applicability of the counterpoise correc-
tion, 214 van Lenthe!!-12:15 and Gutowski'* and their colleagues were strong
defenders of the applicability and correctness of the full CP. These two groups
showed that the methods that were used to demonstrate that the FCP method
produced an overcorrection to the total interaction energy contained deficien-
cies in their implementation that give rise to serious errors, Both reviews
covered in much detail several cases in which the FCP was shown to correctly
account for BSSE. Symmetry-adapted perturbation theory (SAPT)¢1-63 studies
were performed to compare the contribution of the correlated (MP2) energies
with similar results obtained using SAPT. From the argument that at the SCF
level most of the BSSE effects can be taken care of by using large basis sets with
added diffuse functions, one should then concentrate on the correlated energies,
namely, the MP2 energies. Under SAPT, the MP2 energy can be expressed in
terms of the uncoupled Hartree—Fock dispersion energy, the second-order cor-
relation correction to the electrostatic interaction energy, and a term that covers
both the exchange and correlation contributions to the interaction energy. The
SAPT method worked well with nonpolar system such as the helium dimer.

In an attempt to settle the controversy about whether VCP or FCP is better,
Gutowski and Chalasinski'* proposed the following scheme. From perturba-
tion theory it has been proved that the dispersion term is the most sensitive to the
basis set. Therefore, increasing the size of the basis sets should show a relation-
ship between the correlated energy at the MP2 level and the dispersion term,
provided the BSSE is properly accounted for in the MP2 value for the energy. The
authors do indeed find a nice correlation between these two energies when the
FCP was used. On the other hand, the MP2 energies obtained when the VCP
correction was used did not produce any correlation at all. It was concluded that
the FCP provided the proper correction to the interaction energy.

The results from the foregoing studies'2:'# are in contradiction with the
results of Yang and Kestner.?#*! However, the methodology used by the latter
group has not been proven faulty; rather, the results differ because the later
workers used smaller basis sets, partly on purpose, because they wanted to find
some overcorrections. Moreover, the two studies were carried out with different
sets of basis functions, so that a one-to-one comparison is unjustified. Gutowski
and Chalasinski? stress the fact that their results were obtained with large basis



Bond Functions 113

sets, which have been called “extended interaction-energy-oriented basis sets.”
One would question the applicability of basis set of the same kind for other
large systems involving 20-30 electrons.

SECONDARY CORRECTIONS

Another aspect of BSSE is the distortion of the electron density on one of
the monomers as the second monomer approaches. For a totally symmetric
monomer such as a rare gas atom, an induced dipole will be created, thus
adding an effect due to the induction energy®* which is a component of the
interaction energy. For polar molecules, their dipole moments could be highly
distorted by the approaching monomer. Distortion of multipole moments is
more important in the interaction of an ion with polar or nonpolar molecules as
studied by Latajka and Scheiner.®®-6¢ This effect has been called the secondary
basis set superposition error®* and is known to affect several one-electron
properties such as dipole moments, higher moments, and polarizabilities. Sec-
ondary BSSE effects are more pronounced when small basis sets are used. How-
ever, it has been noted®” that the use of well-tempered basis sets? significantly
reduces the change in the dipole moment and thus the secondary BSSE. In the
case of ion—molecule interactions, Latajka and Scheiner®%+¢® found that second-
ary effects are as important as primary BSSE effects.

A likely source of secondary BSSE and even higher order BSSE effects is
the current practice of adding bond functions (see next section). These bond
functions should be used with care because they can alter the electronic distribu-
tion on a monomer. Beyond the cases of ion-molecule interactions and bond
functions, secondary BSSE effects are ignored in practice because the basis sets
employed for the study of interaction energies are both large enough and high
enough in quality to ensure that little distortion of dipole moments on mono-
mers is observed after the addition of the ghost orbitals. The effects of using
small basis sets on the dipole moment is discussed in more detail later (see “Case
Studies”).

BOND FUNCTIONS

The use of bond functions was an approach originally aimed at reducing
the effects of BSSE,®¥-7? in addition to providing a mechanism to use what is
known about a bond in small systems for creating a wavefunction of a larger
system containing the same bonds. The traditional approach in applied quan-
tum chemistry is to use basis functions centered on atoms and to add diffuse,
high angular momentum polarization functions to account for effects taking
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place far from the nuclei. The idea behind bond functions is to place ghost
orbitals away from the nuclei in regions where possible electron interactions are
poorly described by the atom-centered basis sets. Normally the location of a
bond function is varied to improve performance.” The addition of bond func-
tions and their location was extensively studied by Tao,3”>7!72 in particular for
van der Waals complexes. He observed that bond functions are very helpful
when correlation effects are included in the calculations. This can be sim-
plistically described as follows. The interaction correlation energy of a system
can be divided into intramonomer and intermonomer contributions, with the
intermonomer correlation energy being the dominant term (induction energy).
Consider an excited configuration of the dimer in which one electron from each
monomer is excited. These two electrons may interact with each other in such a
way that bonding and antibonding orbitals are formed, thus lowering the en-
ergy and contributing to the intermonomer energy. These newly formed orbitals
are properly and easily represented by the addition of polarized, diffuse func-
tions in the middle of the bond (or somewhere along the bond).

There are two important reasons for using bond functions. First, when
two monomers approach each other, it is possible that at a location between the
monomers electrons from each subsystem will interact thus forming diffuse
bonding and antibonding orbitals. A limited basis set of atom-centered func-
tions will not properly account for these “bonding” interactions. Second, the
presence of bond functions at some point, such as at the centroid of the sub-
systems, will facilitate the formation of such “bonding” interactions; thus an
energy lowering may occur which contributes to the intersystem correlation
energy. These “bonding” interactions are expected to be highly diffuse and are
thus properly represented by highly diffuse polarization functions.

A possible source of error is the selection of both the atom-centered basis
sets and the bond function. Normally, one should optimize the bond functions
subject to the constraint that the SCF energy is not significantly changed. This
means that one should use saturated basis sets so that the distortion of the
electron distribution is minimal. Usually the proper representation and rapid
convergence of dispersion energies necessitates the use of high angular momen-
tum polarization functions (f- and g-type functions). Tao”? found that the need
for g-type and even f-type polarization functions could be eliminated if bond
functions (diffuse spd functions) were used. Currently, bond functions are being
used extensively in studies of molecular interactions to accelerate the con-
vergence of dispersion energies.”?

BASIS SET RECOMMENDATIONS

As discussed in the Introduction, the selection of the best (yet practical) set
of basis functions for describing a particular system (e.g., a chemical reaction) at
all stages, with reactants, intermediates, transition states, and products, is not a
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trivial task. In fact, it has been suggested that the selection of the basis sets that
best describe a particular system is more an art than an exactly prescribed
technique. It has been almost universally accepted that one must employ ex-
tended basis sets to obtain reasonable results when total energies, interaction
energies, and molecular properties are being computed. Earlier studies*”->°
found that the use of large basis sets as well as the use of additional diffuse
functions would minimize the BSSE. By increasing the functional space of one
monomer, the BSE effect of the second monomer can be better accommodated
by the additional diffuse functions on the first monomer. Such reasoning may
not work well for simple calculations at the post-Hartree—Fock level, however,
because it has been found that when correlation is included, the BSSE ¢annot be
reduced as effectively as with simple SCF calculations.”#~7¢ We find, however,
that with density functional theory (DFT) calculations the use of large basis sets,
diffuse sp, and several sets of d- and f-type polarization functions also reduces
and virtually eliminates BSSE.

Important guidelines for selecting basis sets for ab initio calculations are
given by Feller and Davidson in the first volume of this review series.® To select
the appropriate basis sets that best describe a given system, one should always
consider, as a starting point, the electronic properties or physical phenomena
one wishes to study. Some of these computations may focus on geometrical
studies, relative energies of isomers, or electronic properties such as the ioniza-
tion potential, dipole or higher moments, polarizabilities, and interaction ener-
gies. If one is considering the dipole—dipole type of interactions, a good descrip-
tion of the electrostatic energy is required, whereas if interactions between
nonpolar molecules are considered, dispersion effects are important, just to cite
a couple of examples. The most important case is perhaps encountered when
accurate interaction energies are wanted and thus BSSE corrections must be
made. As stated by Chalasinski and Szczesniak in their review,” to select the
most adequate basis sets one should account for multiple moments, polar-
izabilities, and the electron density at long distances, among other things. In
their review’ (see also Ref. 77), the contributions to the interaction energy in
Eq. [2], as well as the effect of using basis sets of different sizes, are described in
much detail. The chapter by Feller and Davidson'® is recommended reading for
the novice computational chemist.

CASE STUDIES

Having defined the BSSE, its origins, and approximate magnitudes, and
having discussed how to determine it and reduce it, we move on to several case
studies in which BSSE has been the focus of study or deemed to be important in
determining the results. We have selected two well-studied systems, the water
dimer (H,0O), and the hydrogen fluoride dimer (HF),, to illustrate the phenom-
ena discussed above and to illustrate how the size of the basis sets, and the num-
ber and quality of polarization functions, affect properties such as dipole mo-
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ment and interactions energies, as well as how BSSE affects some of these prop-
erties. In Tables 1-4 we present the variation of these properties at various levels
of theory (SCF, MP2, and DFT) with respect to the basis sets used, their augmen-
tation by means of additional diffuse functions, and the influence of several sets
of polarization functions. We have chosen these two systems for several reasons:

1. The hydrogen fluoride dimer and the water dimer are small in size and
thus large basis sets approaching saturation have been used to study their
properties.

2. Several sophisticated correlation methods have been used to study interac-
tion geometries and dipole moments, and there now exist many articles on
these two systems describing most of their properties at different levels of
accuracy.’ 882

3. Accurate experimental data are available®3-88 for detailed comparisons with
the calculated values.

The 6-311G family of basis functions,® which in many cases is known as
“standard” by virtue of its availability on popular quantum chemistry packages
such as Gaussian®® and GAMESS,”! were selected for this study. This particular
set of basis functions can be systematically enlarged by the addition of very
diffuse functions and polarization functions on all atoms. The use of high
angular momentum polarization functions has been advocated in the past”>"1:72
as being necessary to reproduce accurately experimental results. Therefore, we
want to study BSSE effects by adding the following sets of polarization func-
tions: d on heavy atoms and p on hydrogen atoms {nd,np sets, 7 = 1-3), and the
further addition of f functions (3df,3pd). A second group of basis sets used in
these sample calculations comprises the so-called correlation-consistent func-
tions proposed by Dunning.??=%% These two general groups of basis sets are
good representations for the medium to large basis sets typically employed by
modern computational chemists.

Geometries

Geometry optimizations are now standard in computational quantum
chemistry. Intramolecular geometrical features can be accurately obtained even
at simple levels of theory. The addition of correlation effects does improve the
results, in particular for bending interactions. On the other hand, accurate
intermolecular geometrical parameters are somewhat more difficult to obtain.
Correlation effects are needed, as a rule, but little improvement in agreement
with respect to experimental results is obtained.

In Table 1 we present a summary of the variation of intermolecular dis-
tances, F-F in (HF), and O-0 in (H,0),, with respect to the size of the basis
sets. Van Duijneveldt et al.”? averaged their results to determine a calculated
internuclear O-O distance; 2.970 £ 0.006 A for the warer dimer and compared
it to what the authors claim should be the correct experimental distance of
2.976 £ 0.004 A. The distance has been measured experimentally with high
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Table 1 Variation of Dimer Separation (A) with Respect to the Size of the Basis Sets

Re_g (HF), Ro_o (H;0),
Basis Set HF MP2 BLYP HF MP2 BLYP
6-311G 2,712 2.707 2.594 2.814 2.797
6-311+G 2.738 2.769 2.726 2.833 2.816
6-311++G 2.739 2.779 2.726 2.835 2.819 2.796
6-311++G(dp) 2.826 2.787 2.774 3.001 2.914 2.927
6-311++G(2d2p) 2.833 2.762 2.770 3.035 2.917 2.947
6-311+G(3d3p) 2.810 2.756 2.753 3.023 2.917 2.942
6-311++G(3df,3pd) 2.814 2.739 2.759 3.026 2.904 2.944
cc-PVTZ 2.809 2.717 2.714 3.029 2.907 2.935
aug-cc-PVTZ 2.826 2.753 2.756 3.039 2.907 2.948
Experiment 2.72-2.79% 2.976 £ 0.004¢

“Theories compared are Hartree-Fock (HF), second-order Maller~Plesset (MP2), and the
density functional theory of Becke and Lee, Yang, and Parr (BLYP).

bFrom Refs. 83 and 84.

‘From Ref, 85.

accuracy.®378% Dyke et al. reported an average distance of 2.78 A for the F-F
internuclear separation, but it is implied that this distance may vary between
2.72 and 2.79 A 8384

Our results produced similar trends for both dimers. At the SCF level,
small basis sets (6-311G) tend to underestimate the equilibrium intermolecular
distance, but that distance rapidly increases with the addition of polarization
functions to the basis sets, leading to an overestimation of the distance. This is,
of course, expected because in both dimers dipole-dipole interactions are pre-
sent, and thus correlation effects should be taken into consideration. As pre-
sented in Table 1 for the MP2 and DFT levels of theory, the intermolecular
distances improve and grow closer to the experimental values without becom-
ing overestimated. For the (HF), system, the intermonomer distances obtained
with most basis sets are within the experimental errors of the experimental
distances, but the experimental error margin is too wide to make a precise
comparison. The computed distances are only approximate values, and higher
effects such as anharmonic effects were not considered. DFT methods are
known to produce geometrical results that agree closely with MP2 results. %7
We find that the DFT intermolecular geometrical parameters for the water
dimer were slightly superior to those from the MP2 calculations by virtue of
being closer to the experimental values. DFT methods include full correlation
effects, thus accounting (possibly) for the improved results. In short, larger basis
sets with several sets of polarization functions are needed at correlated levels to
obtain intermolecular distances close to experimental results.

Dipole Moments

An accurate representation of multipole moments {in particular dipole
moments) is important in systems for which long-range interactions are the
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dominant forces. Many intermolecular potentials for the water molecule used in
molecular dynamic simulations are based on ab initio studies of the water mono-
mer or dimer. These intermolecular potentials need to describe all short-range
interactions that are dominated by the dipole moment. Multipole moments
affect mainly the induction term, which contributes to the interaction energy;
thus proper representation is important to obtain accurate results. Similarly, as
stated earlier, changes in the dipole moment of a monomer by the approaching
second monomer’s orbitals are responsible for secondary BSSE effects.

The dipole moments for the H,O and HF dimers have been measured
experimentally. Dyke et al.®% reported an experimental dipole moment of 2.60
debye for the water dimer, and an experimental value of 2.987 £ 0.003 D has
been reported for (HF),.8* These experimental values can be compared to the
computed values in Table 2. Excellent agreement is obtained for calculations in
which the largest sets were used.

Next consider the changes to the dipole moments of the monomers after
the addition of ghost orbitals at the optimum dimer distances. In Table 3 we
present a representative sample of the results on the deformation of the dipole
moment by the addition of ghost orbitals to each monomer. Small basis sets such
as 6-311++G do not reproduce the experimental value”® for the dipole moment,
nor do they allow for the distortion of the dipole moment on each monomer. On
the other hand, large basis sets with several sets of d- and f-type polarization
functions (aug-c¢c-PVTZ) not only reproduce more closely the experimental
parameters, but also appear to be saturated and capable of accommodating all
effects that produce distortion of the electron density. Similar effects are ob-
served at all levels of theory.

Table 2 Variation of the Dipole Moment (u, debye) in (HF), and (H,0), Dimers
with Respect to the Size of the Basis Sets?

(HF), (H,0),
Basis Set HF MP2 BLYP HF MP2 BLYP
6-311G 4.40 3.74 2.33 4.37 4.24
6-311+G 4.76 4.59 4.24 4.40 4.39
6-311++G 4.76 4.59 423 4.41 4.40 4.05
6-311++G(dp) 3.79 3.66 3.53 3.45 3.30 3.09
6-311++G(2d2p) 3.54 3.38 3.32 2.84 2.70 2.55
6-311++G(3d3p) 3.54 3.44 3.32 2.71 2.57 2.44
6-311++G(3df,3pd) 362 3.47 3.37 2.88 2.68 2.54
cc-PVTZ 347 3.17 2.95 2.92 2.55 2.30
aug-cc-PVTZ 3.51 3.33 3.30 2.95 2.62 2.53
Calculated® 2.60
Experiment 2,987 £ 0.003¢ 2.60°

“For theories compared, see note g, Table 1.
5From Ref. 79.
°From Ref. 83.
From Ref. 88.
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Table 3 Dipole Moment (debye) of a Water Molecule in a Dimer: Effect of Adding
Ghost Orbitals

aug-cc-PVTZ 6-311G
A4 Bb Ce Ad Bb Ce
SCF 1.939 1.940 1.933 2.550 2.519 2.385
MP2 1.860 1.856 1.853 2.555 2.498 2.333
BLYP 1.802 1.799 1.795 2.491 2.421 2.259

Experiment 1.844

4Isolated water molecule with no ghost orbitals

b Accepror water monomer in water dimer with ghost orbitals.
“Donor water monomer in water dimer with ghost orbitals.
9From Ref. 101.

Interaction Energies

All computed electronic properties are dependent upon the size and qual-
ity of the basis sets and to the extent of inclusion of correlation effects. For
example, in Table 4 we present the variation of the interaction energy (Eq. [1])
for the water and hydrogen fluoride dimers with respect to the size of the basis
sets at three levels of theory: SCF (HF), MP2, and DFT (BLYP). The small basis
sets (in our case, 6-311G) highly overestimate these energies. The addition of
extradiffuse functions barely improves the results. The addition of (the more
important) polarization functions produces several effects depending on the
method used. At the SCF level, the interaction energies are underestimated, and
the addition of several sets of polarization functions further underestimates
these results. Also, at the SCF level, we find the intersystem distances (O-O and

Table 4 Variation of Interaction Energies (D,, kcal/mol) with Respect to the Size of
the Basis Sets with Hartree—Fock (HF), Maller-Plesset Second Order, and Density
Functional Theory Methods

(HF), (H,0),

Basis Set HF MP2 BLYP HF MP2 BLYP
6-311G 6.91 7.33 8.17 9.12

6-311+G 6.48 6.49 8.04 9.05

6-311++G 6.52 6.54 6.60 8.03 9.12 8.81
6-311++G(dp) 4,33 4,74 4.73 4.80 6.08 5.44
6-311++G(2d2p) 4,06 4.87 4.48 4.07 5.36 4.60
6-311++G(3d3p) 4.12 4.98 4.57 4.05 5.39 4.56
6-311++G(3df,3pd) 4.11 4.95 4.49 4.00 5.31 4.46
cc-PVTZ 4,32 5.50 6.08 4.45 6.08 6.11
aug-cc-PVTZ 3.73 4.71 4.16 3.74 5.18 4.18
Experiment 4.81£0.2° 54+02°

From Ref. 82 and §6.
From Ref. 87.
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F-F) to be overestimated as discussed earlier. The overestimation in separation
is caused by several terms that contribute to the interaction energy and are
either underestimated or absent. For example, some of the terms in Eq. [2] (e.g.,
the dispersion term) are known to be underestimated or not accounted for at the
SCF level.

The inclusion of correlation effects improves the contributions of these
terms to the total interaction energy, as seen in Table 4 for the MP2 and DFT
results. One should be careful in attaching too much meaning to the interaction
energies calculated using Eq. [1]; those results should be corrected for the use of
incomplete basis sets first. The interaction energy obtained at the DFT level is
not improved by the addition of f-type polarization functions; the
6-311++G(3df,3pd) and aug-cc-PVTZ DFT values are underestimated, in con-
trast to the effects of adding f functions at the MP2 level.

A final point to be made in this section is that BSSE also affects the
calculation of potential energy surfaces, which in turn are used extensively in
calculations of interaction energies. These effects may produce drastic shifting
of equilibrium distances between monomers, the depth of energy wells, and
dissociation energies. As an example, we present in Figure 1 the potential
energy surface for the interaction of two fluorine atoms to produce a fluorine
molecule (F,). The BSSE effect is shown for the STO-3G basis set, a very small
basis set. The equilibrium distance is shifted from 1.68 A at the uncorrected
level to 1.806 A when BSSE corrected. The change in the depth of the energy
well is also affected by the addition of a counterpoise correction. This example
illustrates a case of a strong interaction {covalent bond). One should expect
these effects to be proportionately more pronounced in weakly interacting
systems such as van der Waals complexes. Newton and Kestner’* reported
differences in the equilibrium distance of the water dimer of 2.99 and 2.90 A
(no-CP) at the MP2 level.

BSSE Corrected Interaction Energies

As emphasized several times, interaction energies need to be corrected for
the effect of using incomplete basis sets. When the full CP correction is used, the
corrected interaction energy is defined as follows:

AECF = E(dimer{AB}) — E(mon,{AB}) — E(mong{AB}) [4]

int

where all energies, including the monomer energies, were obtained using basis
sets {AB} for the dimer. The reader is reminded that correcting for BSSE effects
does not necessarily mean that interaction energies are closer to the experimen-
tal values. Rather, one is correcting for the incomplete basis set that was used. In
Table 5 we present examples of corrected interaction energies. The general
trend is that all interaction energies are reduced by BSSE effects. The magnitude
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Figure 1 Typical potential energy surface (interatomic potential) for a poor basis set.
The curves compare the uncorrected and the corrected (by counterpoise method)
energies of the F, molecule as obtained with a STO-3G basis set. With better basis
sets, the effect is much less, but the correction generally improves the results.

Table § Variation of the BSSE Corrected Interaction Energies (A
Respect to the Size of the Basis Sets

AEST, keal/mol

ne?

) with

(HF), (H,0),

Basis Sets HF MP2 BLYP HF MP2 BLYP
6-311G 5.80 5.09 6.62 6.15

6-311+G 5.64 5.08 6.42 6.19

6-311+G 5.64 5.08 5.60 6.40 6.17 6.80
6-311++G(dp) 3.96 3.80 4.26 4.27 4.48 4.65
6-311++G(2d2p) 3.67 3.90 4.11 3.77 4.48 3.75
6-311++G(3d3p) 3.70 4.08 4.21 3.74 4.57 4.25
6-311++G(3df,3pd) 3.68 4.09 4.15 3.72 4.61 4.18
cc-PVTZ 3.76 4,12 4.35 3.73 4.40 4.10
aug-cc-PVTZ 3.64 4.26 4.15 3.69 4.74 4.18
Experiment 4.81 £ 0.2¢ 5.4+0.2°b

From Ref. 82 and 86.
bFrom Ref. 87.
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Table 6 BSSE Values (kcal/mol) Calculated Using Eq. [5], Counterpoise Method

(HE), (H,0),

Basis Sets HF MP2 BLYP HF MP2 BLYP
6-311G 1.11 2.24 1.56 2.97

6-311+G 0.84 1.41 1.62 2.86

6-311+G 0.88 1.46 1.0 1.63 293 2.01
6-311++G(dp 0.37 0.94 0.47 0.53 1.60 0.79
6-311-+—i-G(2d2p 0.39 0.97 0.37 0.30 0.88 0.85
6-311++G(3d3p) 0.42 0.90 0.36 0.31 0.82 0.31
6-311++G(3df,3pd) 0.43 0.86 0.34 0.28 0.70 0.68
cc-PVTZ 0.56 1.38 1.73 0.72 1.68 2.01
aug-cc-PVTZ 0.09 0.45 0.01 0.05 0.44 0.00

of this reduction can be seen in Table 6 and depends on the method employed.
Equation [5], which is a combination of Egs. [1] and [4], was used to obtain the
value of the “BSSE energy” presented in the table.

BSSE = E{mon,{A}) + E{mong{B}) — E{mon{AB}) — E(mong{AB}) [$]

From the data in Table 6, we can make several observations. Clearly at the SCF
(HF) and DFT (BLYP) levels, the BSSE can be reduced by the use of large basis
sets with several sets of diffuse basis functions. For the largest basis sets used,
BSSE is practically eliminated. At the MP2 level, the BSSE is not reduced as
easily as in the SCF cases, but in all cases it is still a significant contribution to
the total interaction energy. At the DFT level, the magnitude of the BSSE is
small, even smaller than at the SCF level. The results for the largest basis sets
employed (aug-cc-PVTZ) seem to be free of BSSE effects, although the interac-
tion energies are not as good as the MP2 values.

To help provide the reader with a feeling for what is required to carry out
such calculations, we provide in the Appendix sample files for the programs
(Gaussian 94 and GAMESS) to calculate BSSE of simple dimers. The Gaussian
sample file contains first an input deck to perform the full optimization of the
dimer. Then the geometry is read from the checkpoint file and a subsequent
calculation is to be carried out on the optimized geometry using the keyword
“massage” to eliminate the nuclei and the electrons on one of the monomers.
An addirional calculation is then run to obtain the BSE energy for the second
monomer using the optimized geometry, again, by changing the atomic centers
that have zero nuclear charges.

The input file for GAMESS is not as simple. One has to prepare and carry
out three calculations. First, one performs the full optimization using the chosen
basis sets. Then one must prepare an input file with the optimized geometry and
use a nuclear charge of zero to eliminate nuclei and electrons on one of the
monomers, Similarly, another input file must be prepared for the second mono-
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mer. There is no equivalent to the “massage” keyword in the Gaussian pro-
grams. Of course, the GAMESS procedure is general, and any program, includ-
ing the Gaussian programs, can be run similarly using explicitly defined basis
sets followed by repeating the calculation again while defining the ghost atoms.
In Gaussian the ghost atoms could be defined as Bq rather than by means of their
atomic symbol (H, O, N, etc.), but the method using “massage” is simpler.
Clearly, though, the idea of describing and using ghost orbitals for CP is straight-
forward, and most scientists should take it into account in their ¢alculations.

MANY-BODY COUNTERPOISE
CORRECTION

So far we have described the CP correction for dimers that were well
defined. When we have many monomers present, how best to do the CP is not
so obvious because the BSSE is not additive, and thus ambiguities can result.
Earlier workers such as Turi and Dannenberg®” addressed this problem, but
their solution:

CP = 2(E, - E}) [6]

and the CP corrected energy:
AE e = Eancgar)) — Ea({ABC}) — Eg({ABC}) — E({ABC}) [7]

are adequate. In Eq. [6] the sum is over all monomers, and the asterisk means
that the monomer is calculated with the full basis set, including all functions of
the #-mer. In Eq. [7] the notation is as follows: the symbols in parentheses are
the basis sets used; so (ABC} means that the calculation is performed using the
same bases on all three centers in each calculation. This was tested on hydrogen
fluoride clusters with good success.”” However, Valiron and Mayer%? encoun-
tered some difficulties in treating the helium trimer. They proposed a new
scheme, which behaves like a perturbation scheme, based on ideas similar to
those of White and Davidson.'?! Valiron and Mayer suggested that the CP-
corrected form for a trimer should be:

AE 5c=Eapc({ABC)) - E5p({ABCH +E, ({AB]) EAoc({ABC)H) +E5c({AC)
= Epc((ABC}) + Epc({BC}) — E5((AB}) — EA({AC} + E5({ABC}) (8]
— Ex({AB}) - Ep({BC}) + E{{ABC}) - Ec{{AC}) - E{{BC}) + E({ABC})

The expressions for a general #-mer are also in their paper.!®® Results for the
helium trimer and preliminary results for the tetramer appear to be well be-
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haved, but this does not completely resolve the problems of many-body correla-
tions. Fortunately the CP corrections reach a limit for fairly small clusters
because orbitals are reasonably localized, thus large #-mers should not have
BSSE much larger than small ¢lusters.

SUMMARY

The basis set superposition error is a major impediment to obtain-
ing accurate interaction energies and other properties of molecules when
“small” basis sets are used. The larger the system being studied, the more one
is forced to use smaller basis sets and the larger the BSSE. The errors are larg-
est at levels of electronic structure theory that include electron correlation.
It is often possible with small molecules to use basis sets large enough to re-
move the BSSE at the SCF level, but usually not at the correlated level. The
simple counterpoise (CP) correction method works amazingly well, although in
theory it could overcorrect. Overcorrection does not appear to be a serious
problem.

We have presented the situation as it exists now based on many studies,
but what can we expect in the future? It seems clear that for routine work, even
at the correlated level, one must correct for BSSE, and the simplest and quite
accurate way to do that is via the full counterpoise {FCP) correction. When one
needs very accurate calculations including electron correlation, or to study large
systems with many atoms {where bond functions and other techniques might
work), FCP may not be sufficient. Better methods may be necessary. Right now
those newer methods have their bottlenecks in the form of more complex com-
puter programs for very little gain. Also disturbing is the need to calculate the
interaction energy between large systems by taking the difference between very
large numbers, but that need exists because methods like symmetry-adapted
perturbation theory and the chemical Hamiltonian approach are difficult to
implement in the general case or at least are not readily available. The hope is
that new, easier-to-use methods will be found and incorporated into standard
quantum chemistry packages.

When we begin to calculate the interaction of systems in excited states, the
problems will get much, much worse because present approaches are not up to
the task. In addition, when geometries are sensitive to the BSSE, we need much
better methods than are currently available, since geometry optimization must
be done concurrently with the energy minimization (requiring better coupling
of statistical mechanics and quantum mechanics, a problem many researchers
are now exploring).

We end by encouraging more research into cases where the BSSE is large.
For small systems the FCP usually works well, but not always.
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APPENDIX. SAMPLE INPUT DECKS
FOR COUNTERPOISE CORRECTIONS

Sample Input Deck for Counterpoise
Corrections Using Gaussian 92 or 94

The first part below calculates the optimum geometry of the water dimer
and saves necessary information in a checkpoint file {bsse.chk). The second
part, beginning with “Link 1” repeats the calculation, but the keyword “mas-
sage” sets the nuclear charge on all atoms in one water molecule equal to zero
(atoms 1,3,4). This step should be followed by another calculation that sets the
nuclear charge on centers 2, 5, and 6 equal to zero, to obtain the second
monomer-corrected term.

%Chk=bsse.chk
#nhf/6-311++G{d,p) test scf=(direct, tight) opt=tight

water dimer at 6~311++G{d,p) diffuse and polarization
functions, optimization

0

1r2

2r3 1las3

2rd4d lad4 3d4
15 2ab 34d5
lre 2a6 3d6

T m m OO

r2=2.7398
r3=10.9871
a3=110.83
rd=0.9871
ad=110.83
d4=111.20
r5=0.9895
ab= 0.19
d5=124.40
r6=0.9881
a6=100.58
dé=124.40

~--Linkl--
%$Chk=bsse.chk
#n hf/6-311++G(d,p) test MASSAGE GEOM({check)
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BSE energy, monomer 1
01

I Nuc 0.0
3 Nuc 0.0
4 Nuc 0.0

Sample Input Deck for Counterpoise
Corrections Using GAMESS

This calculation assumes that the optimum geometry has been determined
in a previous run. Note that the second oxygen and the first two hydrogens have
their nuclear charges set to zero. To get the other corrected monomer energy, a
third run is necessary, with the first oxygen and last two hydrogens having their
nuclear charges set to zero.

+++++++ A+

! Sample input file (H20)2 at STO-3G

!

SCONTRL SCFTYP=RHF RUNTYP=ENERGY $SEND
$SYSTEM TIMLIM=99999 MEMORY=5000000 S$END
SGUESS GUESS=HCORE \$END

SDATA

water dimer Ghost functions

Cl

OXYGEN 8. .000000 .000000 .000000
S 3

1 130.70932000 0.15432897
2 23.80886100 0.53532814
3 6.44360830 0.44463454

L 3

1 5.03315130 -0.09896723 0.15591627
2 1.16959610 0.39951283 0.60768372

3 0.38038800 0.70011547 0.39195739

OXYGEN 0.0 .000000 .000000 2.73%2800
S 3

1 130.70932000 0.15432897
2 23.80886100 0.53532814
3 6.44360830 0.44463454

L 3
1 5.03315130 -0.09%96723 0.15591627
2 1.16959610 0.39951283 0.60768372

3 0.38038500 0.70011547 0.38195739
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HYDROGEN 0.0 . 922583 .000000 3.090809
S 3

1 3.42525091 0.15432897

2 0.62391373 0.53532814

3 0.16885540 0.44463454

HYDROGEN 0.0 -.333629 .860146 3.090808
s 3

1 3.425250091 0.15432897

2 0.62391373 0.53532814

3 0.16885540 0.44463454

HYDROGEN 1.0 -.001854 -.002707 .9894595
s 3

1 3.42525081 0.15432897

2 0.62391373 0.53532814

3 0.16885540 0.44463454

HYDROGEN 1.0 -.548753 -.801434 -.181423
S 3

1 3.42525081 0.15432887

2 0.62391373 0.53532814

3 0.16885540 0.44463454

SEND
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