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Correlation of the Electronic
Motions

“God does not care about our mathematical difficulties, He integrates empirically.”
Albert Einstein

Where Are We?

The main road on the trunk leads us to the right part of the crown of the tree.

An Example

As vsual, let us consider the simplest example: the hydrogen molecule. The normalized Hartree-Fock determinant,
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with double occupancy of the normalized molecular orbital (¢ = ¢, ¢2 = ¢@f), after expansion, immediately
gives
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The key quantity here is | g g (1, 2)|2, since it tells us about the probability density of the occurrence of certain
coordinates of the electrons. We will study the fundamental problem for the motion of electrons: whether the electrons
react to their presence.

Let us ask a few very important questions. What is the probability density of occurrence of the situation when
electron 1 occupies different positions in space on the contour line ¢ = const and has spin coordinate o = 1/2
while electron 2 has spin coordinate o = —1/2, and its space coordinates are x2, v, z2 (conditional probabilitv)?

We calculate
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578 Chapter 10

Electron | changes its position on the contour line, but the distribution of the probability density of electron 2 (of
the opposite spin) does not change a bit, although electron 2 should move away from its pariner, since the electrons
repel each other. Electron 2 is not afraid to approach electron 1. The latter can even touch electron 2, and it does not
react at all. For such a deficiency, we have to pay through the high average value of the Hamiltonian (since there is
a high average energy of the electron repulsion). The Hartree-Fock method, therefore, has an obvious shortcoming.

We now ask about the probability density of finding a situation in which we leave everything the same as before, but
now electron 2 has spin coordinate o5 = 1/2 (so this is the situation where both electrons have identical projections
of spin angular momentum' ). What will the response to this change be of | VRHF (1, 2) |2 as a function of the position
of electron 27

Again. we calculate
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We ask about the distribution of the electron of the same spin. The answer is that this distribution is evervwhere
equal 1o zero; 1.e., we do not find electron 2 with spin coordinate % independent of the position of the electron 1 with
spin coordinate {r (in whatever point on the contour line or beyond it).

The second conclusion can be accepted, since it follows from the pairing of the z-‘.pim-;,2 but the first conclusion
is just absurd. Such nonsense is admitted by the Hartree-Fock method. In this chapter, we will ponder how can we
introduce a correlation of electronic motions.

We define the electronic correlation energy as

Ecoretl = E — ERHF.

where E is the energy entering the Schridinger equation,” and E g F is the Restricted Hartree-Fock energy.? One
has to note that the Hartree-Fock procedure takes into account the Pauli exclusion principle, so it also considers the
correlation of electrons of the same spin coordinate. Hence, the correlation energy E..p¢f is defined here with respect
to the Hartree-Fock level of electron correlation.

What Is It All About?

The outline of the chapter is as follows:

»  First, we will discuss the methods that explicitly (via the form of the suggested wave function) allow the electrons
to control their mutual distance (“a correlation of motions™).

I we may ask: “Why is this?" After all, we consider a singlet state, hence the spin projections are opposite. We will
not find the situation with parallel spin projections. But this is nothing to worry about. If, in fact, we are right,
then we will get O as the density of the respective conditional probability. Let us see whether it will really be so.
This is ensured by the singlet form of the spin part of the function.

This is the rigorous nonrelativistic energy of the system in its ground state. This quantity is not available exper-
imentally; we can evaluate it by subtraction of the calculated relativistic corrections from the energy of the total
ionization of the system.

Usually, we define the correlation energy for the case of double occupancy of the molecular orbitals (the RHF
method; see p. 394). In the case of open shells, especially when the multideterminantal description is required,
the notion of correlation energy still remains to be defined. These problems will not be discussed in this book.
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*  Inthe second part of the chapter, the correlation will be less visible, since it will be accounted for by application
of linear combinations of the Slater determinants. We will discuss the variational methods (VB, CI, MC SCF),
and then the non-variational ones (CC, EOM-CC, MBPT).
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= Which Excitations Are Most Important?

«  Natural Orbitals (NOs)
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=  Size-Consistency of the CC Method
»  Example: CC with Double Excitations

Equation-of-Motion Coupled Cluster (EOM-CC) Method (4) p. 638

»  Similarity Transformation
»  Derivation of the EOM-CC Equations

Many-body Perturbation Theory (MBPT) (¢) p. 641

=  Unperturbed Hamiltonian
=  Perturbation Theory-Slightly Different Presentation

»  Reduced Resolvent or the “Almost” Inverse of ( E([)O) ek (U])
=  MBPT Machinery—Part 1: Energy Equation

=  MBPT Machinery-Part 2: Wave Function Equation

= Brillouin-Wigner Perturbation Theory

*  Rayleigh-Schriédinger Perturbation Theory

Mgller-Plesset Version of Rayleigh-Schridinger Perturbation Theory(A() p. 648

»  Expression for MP2 Energy
=  Convergence of the Mgller-Plesset Perturbational Series
»  Special Status of Double Excitations

In the previous chapter, we dealt with the description of electronic motion in the mean field approximation.
Now we use this approximation as a starting point toward methods that account for electron correlation. Each of
the methods considered in this chapter, when rigorously applied, should give an exact solution of the Schrédinger
equation. Thus, this chapter will give us access to methods providing accurate solutions of the Schrodinger equation.

Why Is This Important?

Perhaps, in our theories, the electrons do not need to correlate their motion and the results will be still acceptable?
Unfortunately. this is not so. The mean field method provides ca. 99% of the total energy of the system. This is
certainly a lot, and in many cases. the mean field method gives very satisfactory results. but still falls short of treating
several crucial problems correctly. For example,

*  Only through electron correlation do the noble gas atoms attract each other in accordance with experiment
(liquefaction of gases).

»  According to the Hartree-Fock method, the Fo molecule does not exist at all, whereas the fact is that it exists,
and is doing quite well (bonding energy equal to 38 kcalfn101).5

=  About half the interaction energy of large molecules (often of biological importance) calculated at the
equilibrium distance originates purely from the correlation effect.

*  The Restricted Hartree-Fock (RHF) method used to describe the dissociation of the chemical bond gives simply
tragic results (cf. Chapter 8, p. 437), qualitatively wrong; on the other hand, the Unrestricted Hartree-Fock
(UHF) method gives a qualitatively correct description.

We see that in many cases, electronic correlation must be taken into account.

What Is Needed?

»  Operator algebra (see Appendix B available at booksite.elsevier.com/978-0-444-59436-5)
. Hartree-Fock method (Chapter 8)

3 Yet this is not a strong bond. For example, the bonding energy of the H; molecule equals 104 kcal/mol, of the
HF - 135 kecal/mol.
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=  Eigenvalue problem (see Appendix L available at booksite.elsevier.com/978-0-444-59436-5, p. e107)

s Varnational method (Chapter 5)

=  Perturbation theory (Chapter 5, recommended)

*  Matrix diagonalization (see Appendix K available at booksite.elsevier.com/978-0-444-59436-5, p. el05,
recommended)

= Second quantization (see Appendix U available at booksite.elsevier.com/978-0-444-59436-5, p. el53)

Classic Papers

The first calculations with electron correlation for molecules were performed by Walter Heitler and Fritz Wolfgang
London in a paper called “Wechsehwirkung neutraler Atome und homdopolare Bindung nach der Quantenmechanik,”
published in Zeitschrift fiir Physik, 44, 455 (1927). The covalent bond (in the hydrogen molecule) could be correctly
described only after the electron correlation was included. June 30, 1927, when Heitler and London submitted this
paper, is the birth date of quantum chemistry. % The first calculations incorporating electron correlation in an atom
(helium) were published by Egil Andersen Hylleraas in an article called “Neue Berechnung der Energie des Helivms
im Grundzustande. sowie des tiefsten Terms von Ortho-Helium.” published in Zeitschrift fiir Physik. 54. 347 (1929).
% Later, significantly more accurate results were obtained for the hydrogen molecule by Hubert M. James and Albert
S. Coolidge in an article called “The ground state of the hvdrogen molecule,” published in the Jowrnal of the
Chemical Physics, 1, 825 (1933), and a contemporary reference point for that molecule are several papers by
Wiodzimierz Kolos and Lutoslaw Wolniewicz, among which was an article entitled ~ Potential energy curves for
the X ]E;' , B35, €11, states of the hydrogen molecule” published in the Journal of Chemical Physics, 43,
2429 (1965). % Christian Mgller and Milton S. Plesset in Phvsical Review, 46, 618 (1934), published a paper
called “Note on an approximation treatment for many-electron systems.” where they presented a perturbational
approach to electron correlation. % The first calculations with the Multi-configurational self-consistent field (MC
SCF) method for atoms was published by Douglas R. Hartree, his father, William Hartree, and Bertha Swirles
in a paper called “Self-consistent field, including exchange and superposition of configurations, with some results
for oxygen,” Philosophical Transactions of the Royal Society (London), A238, 229 (1939), and the general MC
SCF theory was presented by Roy McWeeny in a work called “On the basis of orbital theories,” Proceedings of
the Roval Society (London), A232, 114 (1955). % As a classic paper in electronic correlation, we also recom-
mend an article by Per-Olov Lowdin, “Correlation problem in many-electron quantum mechanics.” published in
Advances in Chemical Physics, 2, 207 (1959). % The idea of the coupled cluster (CC) method was introduced
by Fritz Coester in a paper in Nuclear Physics, 7, 421 (1958), entitled “Bound states of a manyv-particle system.”
* Jiti Cizek introduced the (diagrammatic) CC
method into electron correlation theory in a paper
“Onthe correlation problem in atomic and molecular
systems. Calculation of wavefunction componenis SELECTED SCIENTIFIC PAPERS
in Ursell-type expansion using quantum-field
theoretical methods,” published in the Journal of
Chemical Physics, 45. 4256 (1966). % The book
“Three Approaches to Electron Correlation in
Atoms” (Yale University Press, New Haven, CT,
and London; 1970), edited by Oktay Sinanoglu and
Keith A. Brueckner, contains several reprints of the
papers that cleared the path oward the CC method.
% A derivation of the CC equations for interact-
ing nucleons was presented by Herman Kiimmel
and Karl-lHeinz Liihrmann, Nuclear Physics, =
A191, 525 (1972), in a paper entitled “Equations for

linked clusters and the energvy variational principle.”

| EGIL A. HYLLERAAS
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Size Consistency Requirement

The methods presented in this chapter will take into account the electronic correlation. A par-
ticular method may be a better or worse way to deal with this difficult problem. The better the
solution, the more convineing its results are.

There is, however, onc requircment that we believe to be a natural one for any method.
Namecly,

any reliable method when applied to a system composed of very distant (i.e., non-
interacting) subsystems should give the energy, which is a sum of the energies for the
individual subsystems. A method having this feature is known as size consistent.”

@ The size consistency has some theoretical issues to be solved. One may define the subsystems and their
distances in many different ways, some of them quite weird. For instance, one may consider all possible
dissociation channels (with different products) with unclear electronic states to assume. Here, we consider
the simplest cases: the closed-shell character of the total system and of the subsystems. Even this is not
unique, however.

Before we consider other methods, let us check whether our fundamental method (i.e., the
Hartree-Fock method) is size consistent or not.

Hartree-Fock Method

As shown on p. 417, the Hartree-Fock electronic energy reads as E'gr = ZfMO(i |f:|i) +
5 Z?i;mll (ijlij) — (ij|ji)], while the total energy is Egr = E'gr + Vun, where the last term
represents a constant repulsion of the nuclei. When the intersubsystem distances are infinite
(they are then non-interacting), one can divide the spinorbitals |i) i = 1,2, ... N into non-
overlapping sets i € A,i € B,i € C, ..., wherei € A means the molecular spinorbital |}
is localized on the subsystem A and represents a Hartree-Fock spinorbital of molecule A, etc.
Then, in the limit of large distances (symbolized by lim, Vg stands for the operator of the
interaction of the nuclei of molecule B with an electron, while lim V,,,, = Y~ , Vi 4, With V4
representing the nuclear repulsion within molecule A, and Eyr(A) denotes the Hartree-Fock
energy of molecule A):

SMO SMO

1
lim Egr = th (|hli) ) + 5 lim > Wijlif) — (ijlji)] + lim Vy,
i,j=1
SMO SMO SMO

=51 S Gatiy +1im Y6 Y sl Z [(Gjlif) — (iflji)]

A €A i€cA B#A 1 ,JEA
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SMO
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=3 Z(r|fa"|:>+0+ > Wijlijy = (ij1ji)] 40+ Vana

A ieA i,jeA
=Y Enr(A).
A

The zeros in the above formula appeared instcad of the terms that vanish because of the
Coulombic interaction of the objects that are farther and farther from one another. For example,
in the mixed terms % Z?g& epllijlij) —{(ijlji)], the spinorbitals |/} and | j) belong to different
molecules, all integrals of the type (ij|ij) vanish because they correspond to the Coulomb
interaction of electron 1, with the probability density distribution ¢7(1)¢; (1) in molecule A,
and electron 2, with the distribution (,b}‘ (2)¢j(2) centered on molecule B. Such an interaction
vanishes as the inverse of the A B distance; i.e., it goes to zero in the limit under consideration.
The integrals (i j|ji) vanish even faster because they correspond to the Coulombic interaction
of ¢*(1)¢; (1) with ¢>* (2)¢i(2) and each of these distributions itself vanishes exponentially if
the distance AB goes to infinity. Hence, all the mixed terms tend to zero.

Thus,

The Hartree-Fock method 1s size consistent.

Kk ok

We have learned, from the example given at the beginning of this chapter, that the “genetic
defect” of the mean field methods is that they describe electrons that ignore the fact that they
are close to or far from each other. For instance. in the two-electron case previously considered.
where we established the coordinates of electron 1, electron 2 has a certain distribution of the
probability density. This distribution does not change when electron 1 moves to a different
position. This means that the electrons are not “afraid” to get close to each other, although they
should, since when electrons are close, the energy increases (Fig.10.1a,b).

The explicitly correlated wave function (which we will explain in a moment) has the inter-
electronic distance built in its mathematical form. We may compare this to making the electrons
wear spectacles.” Now they avoid each other. One of my students said that it would be the best
if the electrons moved apart to infinity. Well. they cannot. They are attracted by the nucleus

6 Of course, the methods described further also provide their own “spectacles” (otherwise, they would not give
the solution of the Schrédinger equation), but the spectacles in the explicitly correlated functions are easier to
construct with a small number of parameters.
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Fig. 10.1.  Absence of electronic correlation in the helium atom as seen by the Hartree-Fock method. Visualization of the cross-
section of the square of the wave function (probability density distribution) describing electron 2 within the plane xy. provided that
electron 1 is located in a certain point in space: (a) at (—1, 0, 0); by at (1, 0, 0). Note that in both cases, the conditional probability
density distributions of electron 2 are identical. This means electron 2 does not react o the motion of electron 1; i.e., there is no
correlation whatsoever of the electronic motions (when the total wave function is the Hartree-Fock one).

(energy gain), and, being close to it, must be close to each other too (energy loss). There 1s a
compromise to achieve.

VARIATIONAL METHODS USING EXPLICITLY
CORRELATED WAVE FUNCTION

10.1 Correlation Cusp Condition

Short distances are certainly the most important for the Coulombic interaction of two charges,
although obviously the regions of configurational space connected with the long interelectronic
distances are much larger. Thus, the region is not large, but important, within it the “collisions”
take place. It turns out that the wave function calculated in the region of a collision must satisfy
some very simple mathematical condition (called the correlation cusp condition). This is what
we want to demonstrate. The derived formulas’ are universal, and they apply to any pair of
charged particles.

Let us consider rwo particles with charges g; and g; and masses m; and m; separated
from other particles. This makes sense since simultancous collisions of three or more particles
occur very rarely compared to two-particle collisions. Let us introduce a Cartesian system of
coordinates (say, in the middle of the beautiful market square in Brussels), so that the system

7 T. Kato, Commun. Pure Appl. Math. 10. 151 (1957).
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of two particles is described with six coordinates. Then (atomic units are used) the sum of the

kinetic energy operators of the particles is

Now we separate the motion of
the center of mass of the two
particles with position vectors r;
and r;. The center of mass in
our coordinate system is indi-
cated by the vector Rcpy =
Xem, Yem, Zem):

T =-

1 1
Aj —
2m j

Nojs
ng -

' Tosio Kato (1917-1999) was an

outstanding Japanese physicist
and mathematician. His studies
at the University of Tokyo were
interrupted by World War Il. After
the war, he got his Ph.D. at this
university (his thesis was about
convergence of the perturbational

| series), and obtained the title of

professor in 1958.
In 1962, Kato became profes-
sor at the University of Berkeley,

(10.1)

/
J'T bl

names of plants, and appreciated
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California. He admired the botanic very much the Charles Linnaeus

Let us also introduce the total garden there, knew a lot of Latin  classification of plants.

mass of the system M =
m; + m;j. the reduced mass
of the two particles p = ":’:f::’fj and the vector of their relative positions r = r; —r;. Introducing
the three coordinates of the center of mass measured with respect to the market square in Brussels
and the three coordinates x, y, and z. which are components of the vector r, we get (see Appendix

I available at booksite.elsevier.com/978-0-444-59436-5 on p. €93, example 1)

. 1 1
.- SN W 103
g emM o (10.3)
a2 92 92
Acy = + + : 10.4
M oxz,, " avZ, = 0z, do5
92 a2 92

B e oo ot 10.

3x24-8y2_F822 (10.5)

After this operation, the Schrodinger equation for the system is separated (as always in the
case of two particles; see Appendix I available at booksite.elsevier.com/978-0-444-59436-5)
into two equations: the first describing the motion of the center of mass (seen from Brussels)
and the second describing the relative motion of the two particles (with Laplacian of x, y, z,
and reduced mass ). We are not interested in the first equation; the second one (Brussels-
independent) is what we are after. Let us write down the Hamiltonian corresponding to the
second equation:

(10.6)
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We are interested in how the wave function looks when the distance of the two particles
r is getting very small. If r is small, it makes sense to expand the wave function in a power
series® of r : ¢ = Cy + C1r + Cor? + - - - Let us calculate H Y close to r = (. The Laplacian
expressed in the spherical coordinates represents the sum of three terms (see Appendix H
available at booksite.elsevier.com/978-0-444-59436-5, p. €91, Eq. H. 1): the first, which contains
the differentiation with respect to r. and the remaining two. which contain the differentiation
with respect to the angles 6 and ¢ : A = ,—_]5%1'28‘%4— terms depending on 6 and ¢. Since we
have assumed the function to be dependent on » only, upon the action of the Laplacian, only

the first term gives a nonzero contribution.

We obtain
~ ] 147
- (——A A5 ﬂ) v 10.7)
2 r
1 (13 ,8 ) |
= (ZZ2l NG+ Crr +Cor? - 10.8
on (’,zar: - )( o+ Cir +Cor? 4 ) (108)
+q“ff (Co+Crr +Car? +---) (10.9)
1 /2C
—0—— (=L 460, +12C3r + - - (10.10)
2u\ r
giq; .
+Co="=+ Cra1gj + Coqugjr +--- (10.11)

The wave function cannot go to infinity when r goes to zero, while in the above expression, we
have two terms ( —L2C and C 0 qj—f“), which would then “explode” to infinity.
21 r ’

These terms must cancel each other out.

Hence, we obtain

; Ci
Cogiqj = 7 (10.12)
This condition is usually expressed in another way. We use the fact that ¢ (r = 0) = Cy and
(%i:) e C; and obtain the cusp condition as follows:

8 Assuming such a form, we exclude the possibility that the wave function goes to oo for r — 0. This must be so,
since otherwise, either the respective probability would go to infinity or the operators would become non-Hermitian
(cf. p. 80). Both possibilities are unacceptable. We covertly assumed also (to simplify our considerations) that
the wave function does not depend on the angles € and ¢. This dependence can be accounted for by making the
constants Cp, Cy, Cp the functions of @ and ¢. Then the final result still holds, but for the coefficients Cpy and Cy
averaged over & and ¢.
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3
(—w) = ugiqjy (r =0).
r=0

* The case of two electrons:
Thenm; = mj; = 1; hence, u = % and g; = qj = —1. We get the cusp condition for the

collision of two electrons as
Iy 1 " 0)
—_ = —/(r =
or ), 2

or (introducing variable r = ry; together with particles’ position vectors ry and r7)

the wave function should be of the form
Y =¢@,r)[1+3r2+--],

where + - - - means higher powers of r5.
e The nucleus-clectron case:
When one of the particles is a nucleus of charge Z. then p ~ 1. and we get

(?VI) =—ZYy (@ =0).
ar J,—o

Thus

the correct wave function for the electron in the vicinity of a nucleus should have an
expansion ¥y = const(1 — Zrg + - -- ), where r,) replacing r is the distance from the
nucleus.

Let us see how it is with the 1s function for the hydrogen-like atom (the nucleus has charge
Z) expanded in a Taylor series in the neighborhood of » = 0. We have 1s = Nexp(—Zr) =
N — Zr + --- ), which works.

The correlation cusp makes the wave function not differentiable at r = 0.

10.2 The Hylleraas Cl Method

In 1929, two years after the birth of quantum chemistry, a paper by Egil Hylleraas” appeared,
where, for the ground state of the helium atom, a trial variational function, containing the inter-

9 E.A. Hylleraas, Zeit. Phys., 54, 347 (1929). Egil Andersen Hylleraas arrived in 1926 in Géttingen, Germany, to
collaborate with Max Born. His professional experience was related to crystallography and to the optical properties
of quartz. When one of the employees fell ill, Born told Hylleraas to continue his work on the helium atom in
the context of the newly developed quantum mechanics. The helium atom problem had already been attacked by
Albrecht Unsold in 1927 using first-order perturbation theory, but Unsold obtained the ionization potential equal
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electronic distance explicitly, was applied. This was a brilliant idea, since it showed that already
a small number of terms provide very good results. Even though no fundamental difficulties
were encountered for larger atoms, the enormous numerical problems were prohibitive for atoms
with larger numbers of electrons. In this case, the century-long progress means going from 2-
to 10-electron systems.

In the Hylleraas-CI method.'" the Hylleraas idea has been exploited when designing a method
for larger systems. The electronic wave function is proposed as a linear combination of Slater
determinants, and in front of each determinant ®;(1, 2, 3, ..., N), we insert, next to the vari-
ational coefficient ¢;, correlational factors with some powers (v, u, ...) of the interelectronic
distances (r,,,, between electron m and electron n, etc.):

v=Y GA[riri - 90,2,3,...,N)], (10.13)

where A denotes an antisymmetrization operator (see Appendix M available at booksite.
elsevier.com/978-0-444-59436-5, p. e¢l09). If v; = u; = 0, we have the CI expansion:
Y = ) ; ¢i®d; (which we will discuss on p. 615). If v; # 0 or u; # 0, we include a varia-
tionally proper treatment of the appropriate distances r,,,, or ry; i.e., correlation of the motions
of the electrons m and n, or k and [, etc. The antisymmetrization operator ensures the require-
ment for symmetry of the wave function with respect to the exchange of the arbitrary two
clectrons. The method described was independently proposed in 1971 by Wiestaw Woznicki''
and by Sims and Hagstrom.'? The method of correlational factors has a nice feature, in that
even a short expansion should give a very good total energy for the system. since we com-
bine the power of the CI method with the great success of the explicitly correlated approaches.
Unfortunately, the method has also a serious drawback. To make practical calculations, it is nec-
essary to evaluate the integrals occurring in the variational method, and they are very difficult to
calculate.'?

to 20.41 eV, while the experimental value was equal to 24.59 eV. In the reported calculations (done on a recently
installed calculator), Hylleraas obtained a value of 24.47 eV (cf. contemporary accuracy, p. 148).

10 Fere, CI stands for “Configuration Interaction.”

Iy, Woznicki, in Theory of Electronic Shells in Atoms and Molecules (A. Yutsis, ed.), Mintis, Vilnius (1971),
p- 103.

12 1.8, Sims and S.A. Hagstrom, Phys. Rev. A4, 908 (1971).

Btis enough to realize that, in the matrix element of the Hamiltonian containing two terms of the above expansion,
we may find, e.g., a term 1/r12 (from the Hamiltonian) and r{3 (from the factor in front of the determinant), as
well as the product of six spinorbitals describing the electrons 1, 2, 3. Such integrals have to be computed, and
the existing algorithms are inefficient.



Correlation of the Electronic Motions 589

10.3 Two-Electron Systems
10.3.1 The Harmonic Helium Atom

An unpleasant feature of the electron correlation is that we deal either with intuitive concepts
or, if our colleagues want to help us. they bring wave functions with formulas so long as the
distance from Cracow to Warsaw (or longer'?) and say: look, this is what really happens.
It would be good to analyze such formulas term by term, but this approach does not make sense
because there are too many terms. Even the helium atom. when we write down the formula
for its ground-state wave function, becomes a mysterious object. Correlation of motion of any
element seems to be so difficult to grasp mathematically that we easily give up. A group of
scientists published a paper in 1993 that has generated interest on this point. They obtained a
rigorous solution of the Schrodinger equation (described in Chapter 4, p. 212), the only exact
solution which has been obtained so far for correlational problems. '

Note that the exact wave function (its spatial part' 6) 1s a geminal (1.e., two-electron function).

2 2)

¥ (r.r) =N (1 + %m) e Htd), (10.14)

Let me be naive. Do we have two harmonic springs here? Yes, we do (see Fig. 4.26, p. 212).
Then, let us treat them first as independent oscillators and take the product of the ground-state
functions of both oscillators: exp [—% (112 + r%)]. Well, it would be good to account for the
cusp condition ¥ = ¢(ry,r?2) [1 + %1'12 + - ] and take care of it, even in a naive way. Let
us just implement the crucial correlation factor (] + %1'12). the simplest that satisfies the cusp
condition (see p. 587). It turns out that such a recipe leads to a rigorous wave function!'”

From Eq. (10.14), we see that for r; = r; = const (in such a case, both electrons move on
the surface of the sphere), the larger value of the function (and eo ipso of the probability) is
obtained for larger r17. This means that, it is most probable that the electrons prefer to occupy
opposite sides of a nucleus. This is a practical manifestation of the existence of the Coulomb
hole around electrons (i.c., the region of the reduced probability of finding a second electron):

14 This is a very conservative estimate. Let us calculate—half jokingly. Writing down a single Slater determinant
would easily take up 10 cm of space. The current world record amounts to several billion such determinants
in the CI expansion (say, 3 billion). Now let us calculate: 10cm x 3 x 10° = 3 x 101%ecm = 3 x 10°%m =
3 x 10° km = 300000 km. So, this not Warsaw to Cracow, but Earth to the Moon.

15§, Kais, D.R. Herschbach, N.C. Handy, C.W. Murray, and G.J. Laming, J. Chem. Phys. 99, 417 (1993).

16 For one- and two-electron systems, the wave function is a product of the spatial and spin factors. A normalized
spin factor for two-electron systems Lz{a( 1)B(2) — B(1)a(2)} gnarantees that the state in question is a singlet
(see Appendix Q available at booksite.elsevier.com/978-0-444-59436-5 p. e133). Since we will only manipulate
the spatial part of the wave function, the spin is the default. Since the total wave function has to be antisymmetric,
and the spin function is antisymmetric, the spatial function should be symmetric-and it is.

17 As a matter of fact, thatis true only for a single force constant. Nevertheless, the unusual simplicity of that analytic
formula is most surprising.
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the electrons simply repel each other. They cannot move apart to infinity since both are held by
the nucleus. The only thing they can do is to be close to the nucleus and to avoid each other—and

this 1s what we observe in Eq. (10.14).

10.3.2 The James-Coolidge and Kotos-Wolniewicz Functions

One-electron problems are the simplest. For systems with fwo electrons,'® we can apply certain
P p ¥ ppLy

mathematical tricks that allow very accurate results. We are going to talk about such calculations
in a moment.

Kolos and Wolniewicz applied the Ritz variational method (sec Chapter 5) to the hydrogen
molecule with the following trial function:

1 M
W= 7 [e(DB@) —a(2)p()] Zc‘f(q’f(l, 2) + ®;(2, 1)),

A i Kj s I P 2?'12 Hi
®;(1,2) =exp (—A;::I_Aé-z)é.;h ?Jllwé_.é:, Ug ( . )

; (exp (By1 4+ Bmp) + (=% exp (— By — f}:;z)) , (10.15)

where the elliptic coordinates of the electrons with index j = 1, 2 are given by

Faj + Fbj

- (10.16)

?

§j =

Fov o Pps
nj = ‘”T’”, (10.17)
where R denotes the internuclear distance, r,j and r;,; are nucleus-electron distances (the nuclei
are labeled by a, b). ry2 is the (crucial to the method) interelectronic distance, ¢;, A, A, B, B
are variational parameters, and n, k, [, m, j1 are integers (smaller than selected limiting values).
The simplified form of this function with A = A and B = B = 0 is the James-Coolidge'®
function, thanks to which these authors enjoyed the most accurate result for the hydrogen
molecule for 27 years.

I8 For a larger number of electrons, it is much more difficult.
19 FL.M. James and A.S. Coolidge, J. Chem. Phyvs., 1, 825 (1933). Hubert M. James in the 1960s was professor at
Purdue University.
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Kotos and Roothaan,”’ and later
21 Kotos

and Rychlewski, and others,”” applied

on, Kolos and Wolniewicz,

longer and longer expansions (helped
by the fact that computer technology
was improving fast) up to M of the
order of thousands; see Table 10.1.

As can be seen from Table 10.1,
there was a competition between
theoreticians and the experimental
laboratory of Herzberg. When, in
1964 Kotos and Wolniewicz obtained
36117.3 cm™! (see Table 10.1) for
the dissociation energy of the hydro-
gen molecule, quantum chemists held
their breath. The experimental result
of Herzberg and Monfils, obtained
four years earlier (see Table 10.1), was
smaller, and this seemed
to contradict the varia-

Gerhard Herzberg (1904-1999), peee

Wiodzimierz Kolos (1928-1996),
Polish chemist and professor at
the Warsaw University. His calcu-
lations on small molecules (with
Roothaan, Wolniewicz, and Rych-
lewski) had an unprecedented
accuracy in quantum chemistry,

The Department of Chemistry
of Warsaw University and the
Polish Chemical Society estab-
lished the Wilodzimierz Kotos Medal
accompanying a lecture (the first
lecturers were Roald Hoffmann,
Richard Bader, and Paul von Rague
Schleyer). In the Ochota quarter
in Warsaw, there is a Wtodzimierz
Kolos Street. Lutostaw Wolniewicz
{born 1930), Polish physicist and
professor at the Nicolaus Copernicus
University in Torun.

TETTT T T T YT YT TYTTYYY

tional principle (Chapter
5; i.e., as if the theoretical
result were below the
ground-state energy), the
foundation of quantum
mechanics. There were
only three possibilities:
either the theoretical or
experimental results are

Canadian chemist of German ori-
gin and professor at the National
Research Council and at the Univer-
sity of Saskatchewan in Saskatoon
and the University of Ottawa. The
greatest spectroscopist of the 20th
century. Herzberg laid the founda-
tions of molecular spectroscopy, is
author of the fundamental mono-
graph on this subject, and received a
Nobel prize in 1971 “for his contribu-
tion o knowledge of the electronic

Z49canNaDA

structure and geometry of molecules,
pariicularly free radicals.”

wrong or quantum mechanics has internal inconsistency. Kolos and Wolniewicz increased the
accuracy of their calculations in 1968 and excluded the first possibility. It soon turned out that
the problem lay in the accuracy of the experiment.”> When Herzberg increased the accuracy,

20 W. Kolos and C.C.J. Roothaan, Rev. Modern Phys., 32, 205 (1960).

21 For the first time in quantum chemical calculations, relativistic corrections and corrections resulting from quantum
electrodynamics were included. This accuracy was equivalent to hitting, from Earth, an object on the Moon the size
of a car. These results are cited in nearly all textbooks on quantum chemistry to demonstrate that the theoretical
calculations have a solid background.

22 The description of these calculations is given in the review article by Piszczatowski et al. cited in Table 10.1

23 At that time, Herzberg was hosting them in Canada and treated them to a homemade fruit liquor, which was
considered by his coworkers to be absolutely exceptional. This is probably the best time to give the recipe for the
exquisite drink, which is known in the circles of quantum chemists as “kolosovka™:
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Table 10.1.  Dissociation energy of Hy in the ground state (in cm™!). Comparison of the results of theoretical
calculations and experimental measurements. The figures in parentheses mean the error in units of the last digit
reported. Bold numbers are used to indicate the values connected with the Herzberg-Kolos-Wolniewicz controversy.

Year Author Experiment Theory
1926 Witmer 35000

1927 Heitler-London 231004
1933 James-Coolidge 36104°
1935 Beutler 36116(6)

1960 Kotos-Roothaan 3611357
1960 Herzberg-Monfils 36113.6(3)

1964 Kotos-Wolniewicz 36117.3°
1968 Kotos-Wolniewicz. 36117.47
1970 Herzberg 36118.3°

1970 Stwalley 36118.6(5)

1975 Kolos-Wolniewicz 36118.0
1978 Kotos-Rychlewski 36118126
1978 Bishop-Cheung 36117.92
1983 Wolniewicz 36118.01
1986 Kotos-Szalewicz-Monkhorst 36118.088
1991 McCormack-Eyler 36118.26(20)

1992 Balakrishnan-Smith-Stoichefl 36118.11(8)

1992 Kotos-Rychlewski 36118.049
1995 Wolniewicz 36118.069
2009 Piszczatowski et al. 36118.0695(10)¢
2009 Liuet al. 36118.0696(4)

“Obtained from calculated binding energy by subtracting the energy of zero vibrations.

bQObtained by treating the improvement of the binding energy as an additive correction to the dissociation energy.
“Upper bound.

4The references to the cited works can be found in the paper by K. Piszczatowski, G. Fach, M. Przybytek, 1. Komasa, K.
Pachucki, and B. Jeziorski, J.Chem.Theory and Comput., 5, 3039 (2009).

he obtained 36118.3 cm™! as the dissociation energy (Table 10.1), which was then consistent
with the variational principle.

The theoretical result of 2009 given in the table includes non-adiabatic, relativistic and
quantum electrodynamic (QED) corrections. The relativistic and QED corrections have been
calculated assuming the adiabatic approximation and, by taking into account all the terms up to
(%)3 and the leading term in the QED ((1_)4 contribution, some effects never taken into account
before for any molecule. To get an idea about the importance of the particular levels of theory, let
me report their contributions to the Ho dissociation energy (the number in parentheses means

the error in the units of the last digit given). The (%) contribution (i.e., the solution of the

Schrodinger equation) gives 36118.7978(2) cm™!, the (%)1 is equal to zero, (1)2 is the Breit

o

Four a pint of pure spirit into a beaker. Hang an orange on a piece of gauze directly over the meniscus. Cover
tightly and waii for two weeks. Then throw the orange awav—ihere is nothing of value left in it—and tmim your
attention to the spirit. It should contain now all the flavors from the orange. Next, slowly pour some spring water
into the beaker until the liguid becomes cloudy, and then some more spirit to make it clear again. Propose a toast
to the future of quantum chemistry!
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correction (see p. 145) and turned out to be —0.5319(3) cm™ ', the QED (see p- 148) (%)?
correction is —0.1948(2) ecm™!, while the ( )4 contribution is —0.0016(8) cm™!. We see that

1
¢
to obtain such agreement with the experimental value as shown in Table 10.1, one needs to

include all the abovementioned corrections.

10.3.3 Neutrino Mass

Calculations like those above
required unique software, espe-
cially in the context of the non-
adiabatic effects included. Addi-
tional gains appeared unexpect-
edly when Kotos and others”
initiated work aiming at explain-
ing whether the electronic neu-
trino has a nonzero mass.” In
order to mterpret the expen-
sive experiments, precise calcu-
lations were required for the -
decay of the trittum molecule as
a function of the neutrino mass.
The emission of the antineutrino
(v) 1n the process of f-decay:

T, > HeT  +e+v

Alexandr Alexandrovitch Fried-
mann (1888-1925), Russian
mathematician and physicist, in
his article in Zeit. Phys., 10, 377
(1922), proved on the basis of Ein-
stein’s general theory of relativity
that the curvature of the Universe
must change, which became the
basis of cosmological models of
the expanding Universe. During
World War |, Friedman was a pilot
in the Russian army and made
bombing raids over my beloved
Przemysl.

In one of his letters, he asked
his friend, the eminent Russian
mathematician Steklov, for advice
about the integration of equations
he derived to describe the tra-
jectories of his bombs. Later, in
a letter to Sieklov dated Febru-
ary 28, 1915, he wrote: “Recently |

had an opportunity to verify
my theory during a flight over
Przemysl, the bombs fell exactly in
the places predicted by the theory.
To get the final proof of my theory
I intend to test it in flights during
next few days.”

More information can be found
at hitp//www-groups.dcs.st-and.
ac.uk/~history/Mathematicians/
Friedmann_ html.

should have consequences for the final quantum states of the HeT' molecule. To enable eval-
uation of the neutrino mass by the experimentalists Kotos et al. performed precise calculations
of all possible final states of HeT™ and presented them as a function of the hypothetical mass of
the neutrino. There is such a large number of neutrinos in the Universe that if its mass exceeded
a certain, even very small threshold value of the order 0f?% 1 eV, the mass of the Universe would
exceed the critical value predicted by Alexander Friedmann in his cosmological theory (based on

24 W. Kolos, B. Jeziorski, H.J. Monkhorst, and K. Szalewicz, Int. J. Quantum Chem., S19, 421 (1986).

23 Neutrinos are stable fermions of spin % Three types of neutrinos exist (each has its own antiparticle): electronic,
muonic, and taonic. The neutrinos are created in the weak interactions (e.g., in f-decay) and do not participate either
in the strong interactions, or in electromagnetic interactions. The latter feature expresses itself in an incredible
ability to penetrate matter (e.g., crossing the Earth as though through a vacuum). The existence of the electronic
neutrino was postulated in 1930 by Wolfgang Pauli and discovered in 1956 by F. Reines and C.L. Cowan; the
muonic neutrino was discovered in 1962 by L. Lederman, M. Schwartz. and J. Steinberger.

26 The mass of the elementary particle is given in the form of its energetic equivalent me?.
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Einstein’s general theory

of relativity). This would = Edwin Powell Hubble (1889-1953), IR 2%
mean that the currently =~ American astronomer and explorer E[IWIN H"

. ; of galaxies, found in 1929 that the N |
occurring expansion of | G- o between galaxies is pro- BORILTILTIL
the Universe (discov-  portional to the infrared shift in their [FESESEEEEEE

. spectrum caused by the Doppler
ered by Hubhle)_wmlld etfoct. viflch o consecuarily. ner-
finally stop, and its col-  pretedas expansion of the Universe.
lapse would follow. If A surprise from recent astronomical
studies is that the expansion is faster
and faster (for unknown reasons).

the neutrino mass turned
out to be too small,
then the Universe would
continue its expansion. Thus, quantum chemical calculations for the HeT™ molecule may turn
out to be helpful in predicting our fate (unfortunately, being crushed or frozen). So far, the
estimate of neutrino mass gives a value smaller than 1 eV, which indicates the expansion of the

universe.?’

10.4 Exponentially Correlated Gaussian Functions

In 1960, Boys”® and Singer”” noticed that the functions that are products of Gaussian orbitals and

correlational factors of Gaussian type, exp —br{%). where r;; is the distance between electron

i and clectron j, generate relatively simple integrals in the quantum chemical calculations. A

product of two Gaussian orbitals, with positions shown by the vectors A, B, and of an exponential
correlation factor is called an exponentially correlated Gaussian geminal ™

2 2,2
g (r,-, ri;A, B, ay, ay, b) — Ne~lri—A) ,—ax(rj=B)" ,~brij

A geminal is an analog of an orbital-there is a one-electron function, and here is a two-

31

clectron one. A single geminal is very rarely used in computations,”” we apply hundreds or

even thousands of Gaussian geminals. When we want to find out the optimal positions A, B and

27 At this moment, there are other candidates for contributi ng significantly to the mass of the Universe, mainly the

mysterious “dark matter.” This constitutes the major part of the mass of the Universe. We know very little about it.
Recently, it turned out that neutrinos undergo what are called oscillations; e.g., an electronic neutrino travels

from the Sun and on its way spontaneously changes to a muonic neutrino. The oscillations indicate that the mass
of the neutrino is nonzero. According to current estimations, however, it is much smaller than the accuracy of the
tritium experiments.

28 S F. Boys, Proc. Roval Soc. A258, 402 (1960).

29 K. Singer, Proc. Roval Soc. A258, 412 (1960).

30 This is an attempt to go beyond the two-electron systems with the characteristic for the systems approach of James,
Coolidge, Hylleraas, Kotos, Wolniewicz, and others.

31 Ludwik Adamowicz introduced an idea of the minimal basis of the Gaussian geminals [equal to the number of
the electron pairs) and applied to the LiH and HF molecules, L. Adamowicz and A.J. Sadlej, J. Chem. Phys., 69,
3992 (1978).
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the optimal exponents a and b in these thousands of geminals, it turns out that nothing certain
is known about them, the A, B positions are scattered chaotically?‘?; inthea > 0and b > 0
exponents, there is no regularity either. Nevertheless, the above formula for a single Gaussian
geminal looks as if it suggested b > (.

10.5 Electron Holes
10.5.1 Coulomb Hole (Correlation Hole)

It is always good to count *“on fingers” to make sure that everything is all right. Let us see how
a single Gaussian geminal describes the correlation of the electronic motion. Let us begin with
the helium atom with the nucleus in the position A = B = (. The geminal takes the form

QHe = Ne—alrlze—mrz?e—brlzz‘ (]018)

where N > 0 is a normalization factor. Let us assume” that electron 1 is at (xj, 1, 21) =
(1, 0, 0). In such a situation, where does clectron 2 prefer to be? We will discover this (Fig. 10.2)
from the position of electron 2 for which gy, assumes the largest value.

Just to get an idea, let us try to restrict the motion of electron 2. For instance, let us demand
that it moves only on the sphere of radius equal to 1 centered at the nucleus. So we insert
ry = r» = 1. Then. gy, = const exp [—br]zz] and we will find out easily what electron 2 likes
most. With b > 0, the latter factor tells us that what electron 2 likes best is just to sit on electron
1. Is it what the correlation is supposed to mean that one electron sits on the other? Here, we
have rather an anticorrelation. Something is going wrong. According to this analysis, we should
rather take the geminal of the form, e.g.:

ol 2 2
He = Ne 071 p—a173 I:l . e—b: jz:l )

Now everything is qualitatively in order. When the interelectronic distance increases, the
value of the gp, function also increases, which means that such a situation is more probable
than that corresponding to a short distance. If the electrons become too agitated and begin to
think that it would be better when their distance gets very large, they would be called to order by
the factors exp [—al 112] exp [—alr%]. Indeed, in such a case, the distance between the nucleus
and at least one of the electrons is long and the probability of such a situation is quenched
by one or both exponential factors. For large rj» distances. the factor [1 — exp [—br,zz]] is
practically equal to 1. This means that for large interelectronic distances, g g, 1s practically equal
to N exp [—alrlz] exp [—al r%]; 1.e., to the product of the orbitals (no correlation of motions at
long interelectronic distances and rightly so).

32 The methods in which those positions are selected at random achieved a great success.
33 We use atomic units.
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Around electron 1, there is a region of low probability of finding electron 2. This region is
called the Coulomb hole.

The Gaussian geminals do not satisfy the correlation cusp condition (p. 587), because of
factor exp (—br‘?j). It is required (for simplicity, we write r;; = r) that (g_’g')r:o = %g (r =0),

whereas the left side is equal to 0. while the right side %N expl—ay (ri —A)?] exp[—ax(r; —B)?]
is not equal to zero. This is not a disqualifying feature, since the region of space in which this
condition should be fulfilled is very small.

The area of application of this method is—for practical (computational) reasons—relatively
small. The method of Gaussian geminals has been applied in unusually accurate calculations
for three- and four-electron systems.**

10.5.2 Exchange Hole (Fermi Hole)

The mutual avoidance of electrons in the helium atom or in the hydrogen molecule is caused
by Coulombic repulsion of electrons (described in the previous subsection). As we have shown
in this chapter, in the Hartree-Fock method the Coulomb hole is absent, whereas methods that
account for electron correlation generate such a hole. However, electrons avoid each other also
for reasons other than their charge. The Pauli principle is another reason this occurs. One of
the consequences is the fact that electrons with the same spin coordinate cannot reside in the
same place; see p. 34. The continuity of the wave function implies that the probability density
of them staying in the vicinity of each other is small; i.c.,

£
<

Fig. 10.2. TIllustration of the correlation and anticorrelation of the electrons in the helium atom. Panels (a) and (b) present the

machinery of the “anticorrelation” connected with the geminal gy, = Nexp [—1'12] exp [—r%] exp [—21'?2]. In (a), electron |
has a position (0, 0, ), while (b) corresponds to electron 1 being at peoint (1, 0, 0) (cutting off the top parts of the plots is caused
by graphical limitations, not by the physics of the problem). It can be seen that electron 2 holds to electron I; i.e., it behaves in a
completely unphysical manner (since the electrons repel each other). Panels (c¢) and (d) show how electron 2 will respond to such
two positions of electron 1, if the wave function is described by the geminal gy, = N exp [—r]z] exp [—!‘%] [l —exp [—21‘122:”.
In (c), we see that electron 2 runs away “with all its strength” (the hollow in the middle) from electron 1 placed at (0, 0, 0), we have
correlation. Similarly, in (d), if electron 1 is in point (1, 0, (), then it causes a slight depression for electron 2 in this position, we
do have correlation. However, the graph is different than in case (c). This is understandable since the nucleus is all the time in the
point (0, 0, 0). Panels (e) and (f) correspond to the same displacements of electron 1, but this time, the correlation function is equal
o (ry,r) = (1 + %rlg) exp [— r% -+ 1'22)]; 1.e., it is similar to the wave function of the harmonic helium atom. It can be seen
(particularly in panel e) that there is a correlation, although much less visible than in the previous examples. To amplify (artificially)
the correlation effect, panels (g) and (h) show the same as (e) and (1), but for the function yr(r, r2) = (14+25r12) exp [— (r% + :‘% )} 3
which [unlike in (e) and ()] does not satisfy the correlation cusp condition.

34w, Cencek, Ph.D. thesis, Adam Mickiewicz University, Poznan, 1993; also J. Rychlewski, W. Cencek, and
J. Komasa, Chem. Phys. Letters, 229, 657 (1994); W. Cencek, and J. Rychlewski, Chem. Phys. Letters, 320,
549 (2000).
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around the electron, there is a no-parking area for other electrons with the same spin
coordinate (knnown as the exchange, or Fermi hole).

Let us see how such exchange holes arise. We will try to make the calculations as simple as
possible.

We have shown above that the Hartree-Fock function does not include any electron cor-
relation. We must admit, however, that we have come to this conclusion on the basis of the
two-electron, closed-shell case. This is a special situation, since both electrons have different
spin coordinates (O’ = % ando = —%) Is it really true that the Hartree-Fock function does not
include any correlation of electronic motion?

We take the H, molecule in the simplest formulation of the LCAO MO method.”> We
have three electrons. As a wave function, we will take the single (normalized) Hartree-Fock
determinant (of the UHF type) with the following orthonormal spinorbitals occupied: ¢ =

pra, ¢ = @1 B, ¢3 = gra:
1|2 1D a3
Tff{,IHF(112,3)=—T $2(1) $2(2) ¢(3)|.
sy ¢:32) $:03)

Example 1: The Great Escape
We are interested in electron 3 with electron 1 residing at nucleus a with space coordinates

(0, 0, 0) and with spin coordinate op = % and with electron 2 located at nucleus » with coor-
dinates (R.0.0) and o = —%. whereas the electron 3 itself has spin coordinate o3 = %

The square of the absolute value of the function yryr calculated for these values depends on
X3, y3, 23 and represents the conditional probability density distribution for finding electron 3
(provided electrons 1 and 2 have the fixed coordinates given above and denoted by 1y, 2p). So,
let us calculate individual elements of the determinant v 7 (1o, 20, 3), taking into account the
propetrties of spin functions « and g (cf. p. 27):

¢1(0,0,0) 0 ¢1(x3, ¥3, 23)
Yuar(lo, 20.3) = — 0 w1(R,0,0) 0 .
\/3_! ¢2(0,0.,0) 0 @2(x3. y3. 23)

Using the Laplace expansion (see Appendix A available at http://booksite.elsevier.com/978-0-
444-59436-5 on p. el), we get

1
—=191(0, 0, 0)¢1(R, 0, 0)¢2(x3, y3, 23)
Tk % $2(x3, y

—¢1(x3, ¥3, 23)¢1(R, 0, 0)¢2(0, 0, 0)].

35 This involves two atomic orbitals only: 1s;, = x, and 1sp = xp, two molecular orbitals: [bonding ¢; =

YuHF(lo, 20,3) =

7\/2(1%5} (Xa + xp)), and antibonding [¢2 = 7\/2(}_5} (Xa — xp)s cf. p.437] and the overlap integral S = (xa|xp)-
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The plot of this function (the overlap integral S is included in normalization factors of the
molecular orbitals) is given in Fig.10.3.

Qualitatively, however, everything is clear even without the calculations. Due to the forms
of the molecular orbitals (S is small) ¢1 (0, 0, 0) = ¢1 (R, 0, 0) = ¢2(0, 0, 0) = const, we get

1
yunrr (o, 20, 3) & —const? —=x,(3),
V3
so the conditional probability of finding electron 3 is

1 4 2
p(3) ~ §com;t FAC) I (10.19)
We can see that for some reason, electron 3 has chosen to be in the vicinity of nucleus b.
What scared it so much when we placed one electron on each nucleus? Electron 3 ran to be as

far as possible from electron 1 residing on a. It hates electron 1 so much that it has just ignored
the Coulomb repulsion, of electron 2 sitting on b, and jumped on it!*® What has happened?

17 J_f

Fig. 10.3. Demonstration of the power of the Pauli exclusion principle, or the Fermi hole formation for the H;” molecule in
the UHF model (p. 448, a wave function in the form of a single Slater determinant). The two protons (g and 5), indicated by
“+.”" occupy positions (0, 0, 0) and (2, 0, () in au.. respectively. The space and spin coordinates (the latter shown as arrows) of
electrons 1 and 2 [(xl + ¥ 3101 = %) and (xz, W,32,00 =— %). so they have opposite spins] as well as the spin coordinate

of electron 3 (o3 = :lz. the same as the spin coordinate of electron 1) will be fixed at certain values: electron 2 will always sit on
nucleus &, electron 1 will occupy some chosen positions on the x-axis (i.e., we keep v; = 0, z; = 0). In this way, we will have
to work with a section ¥ (x3. ¥3. z3) of the wave function. visualized in the figure by setting z3 = 0. The square of the resulting
function represents a conditional probability density of finding electron 3, if electrons 1 and 2 have the assigned coordinates. (a)
Corresponds to example 1: electron 1 sits on nucleus a. Electron 3 runs away to the nucleus b, despite the fact that there is already
electron 2! (b) Corresponds to example 2: electron 1 sits on nucleus & together with electron 2. Electron 3 runs away to the nucleus
a. (c) Corresponds to example 3—a dilemma for electron 3: electron 1 sits in the middle between the nuclei. Electron 3 chooses the
antibonding molecular orbital (c1). because it offers a node exactly at the position of electron 1 (with same spin), when squared it
creates a Fermi hole (¢2)! (d1) is an even tougher case: electron 1 sits at fl{ of the internuclear distance; so, what is electron 3 going
to do? Electron 3 chooses such a combination of the bonding and of the antibonding molecular orbitals that creates a node (and
a Fermi hole, d2) precisely at the position of electron 1 with the same spin. Clearly, with a single Slater determinant as the wave
function, electrons with the same spin hate one another (Fermi hole), while electrons with the opposite spin just ignore each other
(no Coulomb hole).

36 In fact it does not see electron 2 (because of the one-determinantal wave function).
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] X3

Fig. 10.3. (Continued).

Well, we have some suspicions. Electron 3 could have been scared only by the spin coordinate
of electron 1, the same as its own.
This is just an indication of the exchange hole around each electron.

Example 2: Another Great Escape

Maybe electron 3 does not run away from anything, but simply always resides at nucleus b.
Let us make sure of that by moving electron 1 to nucleus b (electron 2 is already sitting over
there, but that does not matter). What, then. will electron 3 do? Let us see. We have electrons
1 and 2 at nucleus b with space coordinates (R, 0, 0) and spin coordinates o7 = % oy = —%,
whereas electron 3 has spin coordinate o3 = % To calculate the conditional probability, we

have to calculate the value of the wave function.

This time,
¢1(R,0,0) 0 ¢1(x3, y3, 23) , 1
YuHrF(lo,20,3) = — 0 ¢1(R,0,0) 0 ~ const™ —x4(3)
1
VI 0(R, 0,00 0 @a(x3, v3.23) V3

or
p(3) ~ %0011.«;{4[ xa (3. (10.20)
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We see that electron 3 with spin coordinate o3 = % runs in panic to nucleus a, because it is
1

as scared of electron 1 with spin 01 = 5 as the devil is of holy water.

Example 3: A Dilemma

And what would happen if we made the decision for electron 3 more difficult? Let us put
clectron 1 (o) = %) in the center of the molecule and electron 2 (o7 = —%) as before, at
nucleus b. According to what we think about the whole machinery. clectron 3 (with o3 = %)
should run away from electron 1 because both electrons have the same spin coordinates, and
this is what they hate most. But where should it run? Will electron 3 select nucleus a or nucleus
b? The nuclei do not look equivalent. There is an electron sitting at b, while the a center is
empty. Maybe electron 3 will jump to a then? Well, the function analyzed is the Hartree-Fock
type, electron 3 ignores the Coulomb hole (it does not see electron 2 sitting on b) and therefore,
it will not prefer the empty nucleus « to sit at. It looks like electron 3 will treat both nuclei on
the same basis. In the case of two atomic orbitals, electron 3 has a choice: either bonding orbital
¢ or antibonding orbital ¢; (either of these situations corresponds to equal electron densities
on a and on b). Out of the two molecular orbitals, g2 looks much more attractive to electron 3,
because it has a node”’ exactly, where electron 1 with its nasty spin is. This means that there is
a chance for electron 3 to take care of the Fermi hole of electron 1: we predict that clectron 3
will “choose™ only ¢2. Let us check this step by step:

1 o1 (5.0.0) 0 @1(x3, y3, 23)
YurF(lo, 20,3) = 7 0 ¢1(R,0,0) 0
“e2(5.0,0) 0 ©2(x3, ¥3, 23)
1 ¥ (5.0.0) 0 @1(x3. y3. 23)
=— 0 ¢1(R,0,0) 0
]
o 0 eax3,y3,23)

1 R
= —¢ (—, 0, U) ¢1(R, 0, 0)¢a(x3, y3, 23) = consty@a(x3, ¥3, 23)-

V3T \2

And it does exactly that.
In Fig.10.3, in panel (d1), we give an example with electron 1 at %R. The result is similar: a
Fermi hole is precisely at the position of electron 1.

Which hole is more important: Coulomb or exchange? This question will be answered in
Chapter 11.

37 That is, low probability of finding electron 3 over there.
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VARIATIONAL METHODS WITH SLATER DETERMINANTS

In all of these methods, the variational wave function will be sought in the form of a linear
combination of Slater determinants. As we have seen a while ago, even a single Slater deter-
minant assures a very serious avoiding of electrons with the same spin coordinate. Using a
linear combination of Slater determinants means an automatic (based on variational principle)
optimization of the exchange hole (Fermi hole).

What about the Coulomb hole? If this hole were also optimized, a way to the solution of the
Schrédinger equation would open up. However, as we have carefully checked before, a single
Slater determinant does not know anything about the Coulomb hole. If it does not know, then per-
haps a linear combination of guys, each of them not knowing anything, will not do any better...
Wrong! A linear combination of Slater determinants is able to describe the Coulomb hole.?®

10.6 Static Electron Correlation

Some of these Slater determinants are necessary for fundamental reasons. For example, con-
sider the carbon atom ground state, its (triplet) ground state corresponding to the 1522522 p?
configuration. The configuration does not define which of the triply degenerate 2p orbitals
have to be included in the Slater determinant. Any choice of the 2p orbitals will be therefore
non-satisfactory: one is forced to go beyond a single Slater determinant. A similar situation
occurs if an obvious quasi-degeneracy occurs, like for the hydrogen molecule at large distances
(see Chapter 8). In such a case. we are also forced to include in calculations another Slater
determinant. One may say that

what is known as a static correlation represents an energy gain coming from considering in
the wave function (in the form of a linear combination of Slater determinants) low-energy
Slater determinants, which follow from occupying a set of degenerate or quasi-degenerate
orbitals.

10.7 Dynamic Electron Correlation

The dynamic electron correlation means the rest of the correlation effect, beyond the static
one. It corresponds also to occupying orbital energies, but not those related to the degeneracy

or quasi-degeneracy of the ground state. As we see, the distinction the static and the
dynamic correlation is a bit arbitrary. Wt £ . . .
—— ‘ e dhihachs S Srmai

38 Not all linear combinations of Slater determinants describe the Coulomb hole. Indeed, for example, a H.
function in the LCAO MO approximation may be expanded in a series of Slater determinants (see Appendix A
available at booksite.elsevier.com/978-0-444-59436-5) with the atomic orbitals, but no Coulomb hole is described
by this function.
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Example of Beryllium

Let us take a beryllium atom as an illustration. The beryllium atom has four electrons (1s5%2s>
configuration). Beryllium represents a tough case in quantum chemistry because the formally
occupied 2s orbital energy is quite close to the formally unoccupied orbital energy of 2p. In
the present example, we will claim this as a dynamic correlation, but to tell the truth, it is just
between the static and dynamic correlation. One may, therefore, suspect that the excited configu-
rations 2s'2 p! and 2 p? will be close in energy scale to the ground-state configuration 2s2. There
is, therefore, no legitimate arguments for neglecting these excited configurations in the wave
function (what the Hartree-Fock method does). Since the Hartree-Fock method is poor in this
case, this means the electronic correlation energy must be large for the beryllium
atom.”

Why to worry then about the closed-shell electrons 152? Two of the electrons are bound
very strongly (1s%)—so strongly that we may treat them as passive observers that do not react to
anything that may happen. Let us just ignore the inner shell*” i n such a way that we imagine an

“effective nucleus of the pseudoatom” of beryllium as a genuine beryllium nucleus surrounded

by the efectronic cloud Ts2, Thecharge of this “nucleus” is 4 — 2\= 2. Then, the ground-state

Slater determinant for such a pseudoatom reads as :ﬂ@
o e a]pf»hy.

(10.21)

1
%—ﬁ

where we decide to approximate the function 25 as a normalized Slater orbital?' (¢ > 0):

CS
2s = | —rexp(—¢r).
3n

Since the Hartree-Fock method looks to be a poor tool for beryllium, we propose a more

2s(Da(l) 2s(2)a(2)
2s(HB1) 2s)B2) |’

reasonable wave function in the form of a linear combination of the ground-state configuration
[Eq. (10.21)] and the configuration given by the following Slater determinant:

gy — L [2peDa()) 2p,@e@
2 1 20:()B() 2p.(2)B2) |

where just to keep things as simple as possible, we use the 2p, orbital.

! (10.22)

39 This is why we took the beryllium atom and not just the helium atom, in which the energy difference between the
orbital levels 1s and 2s is much larger (i.e., the correlation energy much smaller).

40 The reasoning below may be repeated with the 152 shell included; the calculations will be a bit more complicated,
but the final result very similar.

, 5
4 Let us check whether the normalization coefficient is correct: j(l\')zdv = R%frz exp(—2¢rydV =

§ o B o 5
£ 0 rfexp (—2¢n)dr [ sin0do [T dp =25 [ rd exp (—2zr)dr = 2 41(27) 75 = 1, as it should be.
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Such a function, being a linear combination of antisymmetric functions, is itself antisym-
metric with respect to the electron exchange (as it should be—see Chapter 1). Just to grasp the
essence of the problem, we omit all other excitations, including 25> — 2 p? with the orbitals
2py. 2p; as well as the excitations of the type 25? — 2s'2p'. The latter excitation seems to
require low energy, so it is potentially important. However, it will be shown later in this chapter
that there are arguments for neglecting it (because of a weak coupling with the ground-state
configuration). The x-axis has been highlighted by us (through taking 2 p, orbitals only) for
purely didactic reasons, because soon we are going to frighten electron 2 by using electron 1 in
certain points on the x-axis (therefore, this axis is expected to be the main direction of escaping

for electron 2):
§-3
20 =1t ;.x exp (—¢r) = ¢x (2s).

The drastically simplified wave function reads, therefore, as
¥ = Yo+, (10.23)

where k stands for a coefficient to be determined, which measures how much of the sz
configuration has to be added to the 252 configuration in order to describe correctly the physical
behavior of the electrons®” (for example, this is forced by the variational method or by a
perturbational approach, see Chapter 5). Let us use a perturbational approach, in which we
assume ¥ as a unperturbed wave function. Eq. (5.24), p. 245 says, that with our current
notation, the coefficient ¥ may be estimated as

(1A Do)
K=-——>", (10.24)
Eyp — E\
where the energies Ep and E; correspond to the ground-state configuration (yo) and the
excited-state configuration (), while H" stands for the perturbation. Right now, we have
no idea what this perturbation is, but it is not necessary to know this since (see Chapter 5)

(‘/fl [ f:f(l)iffu) = (i,r'fl |(H — ﬁ(o))ilfo) = (E/fl lf;'T/f(}) — Eo (Ynlvho) = (#’1 ] ﬁ‘/»’(}} -0= ("/fl |1;'¢‘U),
where HO Yo = Eo¥o and (YY) = O (the latter because of the orthogonality of 2s and
2px).

It is seen, therefore, that we have to do with a matrix element of the Hamiltonian calcu-
lated with two Slater determinants containing orthonormal spinorbitals: 2sa. 25 8. 2p¢, 2 px B.
the first two composing o, the last ones present in ;. Hence, all necessary conditions are

42 We are not intending 1o get a perfect description of the system because with such a trial function, there is no
chance to solve the Schrédinger equation anyway. Rather, we are here to grasp a qualitative picture: will it be a
Coulomb hole or not?
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satisfied for operating the third Slater-Condon rule (see appendix M available at booksite.
elsevier.com/978-0-444-59436-5, p. e109). We get

(1};”!91,#0) = (2sa2sB|12pxal2pyB) — (2sa2s B2 px B2 prat)
= (2sa2s B2 pxa2px B) — 0 = (252512 px2py)

= f [2s(1)2px ()] 3 [25(2)2px(2)] AV1dV; > 0.
r2

We have got a key inequality,*? because from Eq. (10.24) and Ey < E,, it follows that
Kk < 0. (10.25)

Our qualitative conclusions will depend only on the sign of k, not on its particular value.
Let us make a set of exercises listed below (all distances in a.u.), first with /g, then with vy,
and finally with ¢ = Yo + x¥1. In all of them, the following is true:

*  The nucleus is immobilized at (0, 0, 0).

e Letus put electron 1, having the spin coordinate o7 = %, at (—1,0,0).

*  We will search the probability distribution of finding electron 2 with the spin coordinate
s =l

*  We will repeat the two last points with electron 1 at (41, 0, 0); i.e., on the opposite side of
the nucleus and at the same electron-nucleus distance.

*  We will compare the two probability distributions. If they were identical, there would be

no correlation whatsoever; otherwise, there would be a correlation.

To this end, we will need three numbers to be calculated (the three numbers in parentheses
represent x, y, and z):

5
25(—1,0,0) = 25(1,0,0) = ,f—cxp (-0)=A>0,
\ 37

3
2p,(1.0,0) = g‘”%exp(—g‘): B > (),

3
2px(—1,0,0) = g]f %(—]) exp(—¢) = —B.
Function rg.

We expand the determinant [Eq. (10.21)] for electron 1 being at position (—1, 0, 0) and obtain
a function of position of electron 2 in the form™** JL’Z‘A - 25(2). Therefore. the (conditional)

43 The inequality follows from evident repulsion of two identical electron clouds (of electron 1 and of electron 2),
because they sit on top of each other.

4 Only the diagonal elements of the Slater determinant are nonzero (the rest of elements vanish because of the spin
functions), so we get the result right away.
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probability density distribution of electron 2 is %AZLZS(Z)]Q: (see Fig. 10.4al). We repeat the
same for position (1, 0, 0) of electron 1 and get the identical result (see Fig. 10.4a2). Conclusion:
there is no Coulomb hole for the ground-state Slater determinant. Well, this is what we should
expect. However, it may be that this result depends on a type of Slater determinant. Let us take
the Slater determinant ;.

Function .

Expanding [Eq. (10.22)] for a fixed position (—1, 0, 0) of electron 1, one gets a function
depending on the position of electron 2 in the form %(—B) - 2px(2), and therefore the condi-

tional probability of finding clectron 2 is %82[2 px(2)1? (Fig.10.5b1). Repeating the same for
position (1, 0, 0) of electron 1, we obtain a function: %B - 2px(2), but still we get the same

probability distribution: %Bz[pr (2)1? (see Fig. 10.5b2). Once again, we obtain no Coulomb
hole.

Function r = g + k1.

We calculate ¢ = g + k¢ for position (—1 A 0) of electron 1 and we obtain a function of

position of electron 2 in the form %A -25(2) + [%(— B)-2p, (2)] with the corresponding

conditional probability distribution of electron 2 as p_(2) = SA%[2s(2)1* + 3x*B*[2p, (2)1* —
kAB-2s(2)-2p,(2) (Fig. 10.4c1). When repeating the same for position (1. 0, 0) of electron 1,

we obtain a different result: N%A -25(2)+« [\% B - 2p, (2)] and therefore a different probability

distribution: p (2) = 3A%[25(2) >+ 362 B*[2px(2)* +k AB-25(2) -2 p (2) (see Fig. 10.4¢2).
So, there is a correlation of the clectronic motion. It would be even better to have this correlation
reasonable.*> Panels (c1) and (c2) of Fig. 10.4 show that indeed, the correlation stands to
reason: the two electrons avoid one another; if electron 1 is on the left side, electron 2 is on the
right side and vice versa.

If we did not have the inequality [Eq. (10.25)], this conclusion could not be derived. For
k > 0, electron 2 would accompany electron 1 (“anticorrelation™), which means “a completely
non-physical” behavior. For k = 0 or k = 400, there would be no correlation.*® All, therefore,

Fa
+

Fig. 10.4. A single Slater determinant cannot describe any Coulomb correlation, but a linear combination of the Slater determinants
can. The image shows the beryllium atom. with a pseudonucleus (of charge +2) shown as a large sphere in the center. All the
images show the sections (z = 0) of the (conditional) probability density distribution of finding electron 2 (a, upper row—for the
single Slater determinant vr; b, second row—for the single Slater determinant v¥ry; ¢, bottom row—for a two-determinantal wave
function ¢ = g + «r1 ), when electron 1, symbolized by a small sphere, resides at (—1, 0, 0) (the left side has the symbol 1) or
at (1, 0, () (the right side has the symbol 2). Only in the case of the two-determinantal wave function ¢ = g + x/{, one obtains
any difference between the probability distributions. when electron | occupies two positions: (—1.0. 0) and (1. 0. 0). The values
& < 0 correspond to mutual avoiding of the two electrons (in such a case, the wave function takes into account the Coulomb hole),
& = () means mutual ignoring of the two electrons, ¥ > () would correspond to a very bad wave function, that describes the two
electrons sticking one (o the other. In order to highlight the correlation effect (purely didactic reasons), we took quite arbitrarily
k=—0Tand = 1.

45 A unreasonable correlation would be. for example, when the two electrons were sticking to each other.
46 All these cases correspond to a single determinant yrg (for &« = 0) and ¢} or —r| (for k = Lo0).
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depends on the coefficients of the linear combination of Slater determinants. This is the vari-
ational principle or the perturbational theory that takes care that the wave function was close
to the solution of the Schrédinger equation for the ground state. This forces a physics-based
description of the electronic correlation—in our case, k < 0.

A two-determinantal function ¥ = ¥ + ki with k < 0 can (in contrast with the single
determinantal functions ¥y and ;) approximate the effect of the dynamic correlation
(Coulomb hole). Of course, a combination of many Slater determinants with appropriate
cocfficients can do it better.

10.8 Anticorrelation, or Do Electrons Stick Together in Some States?

What about clectronic correlation in excited electronic states? Not much is known for excited
states in general. In our case of Eq. (10.23), the Ritz variational method would give two solutions.
One would be of lower energy corresponding tox < 0 (this solution has been approximated by us
using the perturbational approach). The second solution (the excited clectronic state) will be of
the form Vo = Yro+«’v1. Insuch a simple two-state model, the coefficient «” can be found just
from the (necessary) orthogonality of the two solutions: (Yexc|Yr) = (1}10 + &Yy o + 1) =
1+ k™ + & (Y o) + & (Yolyn) = 1 +xx™ = 0.

Hence, k'* = —% > (. We have, therefore, k¥’ > 0 and it is quite intriguing that our excited
state corresponds now to what we call here an “anticorrelation.” In the excited state, we got the
two electrons sticking to each other. This result certainly cannot be thought as of general value
for excited states. It is probable that in excited electronic states, the electronic correlation gets
weaker, but according to what we have found in our two-state model, some excited states might
exhibit the electronic anticorrelation! This indication may be less surprising than it sounds. For
example. the hydrogen molecule has not only the covalent states. but also the excited states of
ionic character (as we will discuss next). In the ionic states, the two electrons prefer to occupy
the same space (still repelling each other), as if there were a kind of “attraction” between them.

Electrons Attract Themselves!

Do the electrons repel each other? Of course. Does this mean that the electrons try to be as
far from themselves as possible? Yes, but the words “as possible” are important. What does
that mean? Usually, this means a game between the electrons strongly attracted by a nucleus
and their important repulsion through the Pauli exclusion principle (Fermi hole), together with
much less important Coulomb repulsion (Coulomb hole).

Letus try to simplify the situation. First, let us remove the presence of the nuclei and see what
clectrons like without them. Then, while all the time keeping the Coulomb repulsion, we will
cither switch on the Fermi hole by considering the triplet states with the two electrons having
opposite spins or switch off the Fermi hole by taking the singlet states of these two electrons.



Correlation of the Electronic Motions 609

Let us take a toy (a model): a circle of radius R (the potential energy within the circle set to
zero, the infinity outside) and two electrons moving along the circle. Thus, there is no nuclei,
only a circle with two electrons living in it. Independent of the singlet or triplet states considered,
our common sense says that these two electrons will avoid each other; i.e., they will prefer to
be on the opposite sites of the circle. Let us check whether this idea is true.

When you write down the corresponding Hamiltonian, it will depend on ¢; and ¢> (two
position angles) and contain the kinetic energy operator of the two electrons plus the Coulombic
repulsion of the electrons %. Now, we can introduce the center of mass angular coordinate
(proportional to ¢ + ¢-) and the relative coordinate ¢ = ¢ — ¢». After exact separation of
the center-of-mass motion, we get the Schrodinger equation for ¢ (j¢ is the reduced mass of the

two electrons):
h? 92 e? _E
(_WW + E) Y (¢) = EY ().

If the Coulombic repulsion were absent, the solutions would be const, exp (im¢) and
exp (—im¢), m = 1,2, ... which means the non-degenerate nodeless ground state and all other
states doubly degenerate. In the future, we will use their combinations ( sin m¢ and cos m¢) as
the expansion functions for the wave function.

Now we reconsider the Coulombic repulsion. In fact, after separation is done, we may treat
clectron 1 as sitting all the time at ¢ = 0 and electron 2 (with the coordinate ¢) moving. The
eigenfunctions for this problem are:

* The nodeless ground state g, which because of the Coulombic term. will not be a constant.
but have a maximum at ¢ = 180" (i.c.. the farthest distance from electron 1). The spatial
function is a symmetric function of ¢, so this describes the singlet ground-state.

¢ The first excited state ¥r; has one node, and this nodal line should be along a straight line:
electron 1 and position ¢ = 180°, This function is antisymmetric with respect to exchange
of the electrons (¢ — —¢), so this is the (lowest) triplet state. This state will be of low-
energy, because it takes care of the Fermi hole, the wave function equal zero for electron 2
at the position of electron 1.

* The second excited state (y») will also have one node (recall the benzene 7t orbitals, or
think about m and —m), but the nodal plane has to be orthogonal to that of i, (symmetric
function; i.e., the first excited singlet). The function ¥ has to be orthogonal to o and ;.
The orthogonality to 3¢ means it has to have larger absolute amplitude at the position of
electron 1 than on the opposite site (¢ = 180" ). So we see that already such a low-energy
state as vrp is of the kind that electron 2 prefers to be closer to electron 1.

e  Similar phenomenon will appear for higher states.

The above description has a resemblance to the rigid dipolar rotator rotating in plane with

a uniform electric field within this plane (with orientation ¢ = 0); see p. 736. There is only

one difference with respect to the problem of two electrons: the reason why the negative pole

of the dipole hates to get the orientation ¢ = 0 (which corresponds to electron 2 avoiding
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electron 1 at ¢ = 0) is the uniform electric field and not the non-uniform electric field created
by electron 1. This difference is of secondary importance. So, the very fact that there are
experimental observations of what is known as low-field seeker dipole molecules (with the
dipole moment against the electric field, see p.736) represents a strong indication that the same
should happen here. So

there will be excited states that describe electrons close to each other, as if they attracted
themselves!

10.9 Valence Bond (VB) Method
10.9.1 Resonance Theory—Hydrogen Molecule

Slater determinants are usually constructed from molecular spinorbitals. If, instead, we use
atomic spinorbitals and the Ritz variational method (Slater determinants as the expansion func-
tions), we would get the most general formulation of the valence bond (VB) method. The
beginning of VB theory goes back to papers by Heisenberg, the first application was made by
Heitler and London, and later theory was generalized by Hurley, Lennard-Jones, and Pople.*’

The essence of the VB method can be explained by an example. Let us take the hydrogen
molecule with atomic spinorbitals of type 1s,« and 1s, 8 (abbreviated as ax and bf) centered
at two nuclei. Let us construct from them several (non-normalized) Slater determinants, for
mstance:

_ L |ata() a@ae@)| _ 1 =
V1= bp) b@p@)| = 75 WHDE@ER) —a@e@bMFD)],
1 ap) 2(2)&(2) e ) -
V2= 7 laa) b@e@)| = 72 [«BDL@FD —a@p@bDD)].
I |a(Da(l) a@ea@)| 1
"’3_5 o R _E[5;(1)&(1)(1(2)5(2)—(J(Z)Q(Z)(r(l)ﬁ(l)]

1
=a(l)a(2) - Elﬂf(])ﬁ(z) —a@)B() = VYu-u+

b(Da(l) bQR)a(2)

| 1
V2 ‘b(l)ﬂ(l) b(2)B(2) V2

V2

The functions 3, ¥4 and the normalized difference Ngyy (Y1 — ¥2) = Yy (Ngr 1s a
normalization factor)

Va = b(1)b(2) -

[a(DB2) —a@)B(1) = Yy+a--

47w, Heisenberg, Zeit. Phys., 38, 411 (1926); ibid., 39, 499 (1926); ibid. 41, 239 (1927); W. Heitler and F. London,
Zeit. Phys., 44, 455 (1927); A.C. Hurley, J .E. Lennard-Jones, and J.A. Pople, Proc. Rov. Soc. London, A220, 446
(1953).
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HEITLER — LONDON FUNCTION (10.26)

1
Vi = Nt [a(Db@ +a@b(D)] - — [a()B@) - a@p(D)] (10.27)

are cigenfunctions of the operators $2 and 3': (cf. Appendix Q available at book-
site.elsevier.com/978-0-444-59436-5, p. €133) corresponding to the singlet state. The functions
Y3, Y4 for obvious reasons are called ionic structures (H~H™' and HTH ~),*® whereas the
function g7 is called a Heitler-London function or a covalent structure.*”

The VB method relies on optimization of the expansion coefficients c in front of these structures
in the Ritz procedure (p. 238):

"ff — Cf.'m.'foL + Ci(ml‘/"“H_H"‘ + Cion’Z]JfH"‘H_- (1028)

Fritz Wolfgang London (1900-1954) was born in Bres-
lau (now Wroctaw) and studied in Bonn, Frankfurt,
Géttingen, Munich (getting his Ph.D. at21), and Paris.
Later, he worked in Zurich, Rome, and Berlin. He
escaped from Nazism to the United Kingdom, where
he worked at Oxford University (1933-1936). In 1939,
London emigrated to the United States, where he
became professor of theoretical chemistry at Duke
University in Durham, North Carolina.

Fritz London rendered great services to quantum
chemistry. He laid the foundations of the theory of
the chemical (covalent) bond and also introduced :
dispersion interactions, one of the most important  chemistry is about. He also worked in the field of
intermolecular interactions. This is nearly all of what  superconductivity.

The covalent structure itself, ¥y, was one great success of Walter Heitler’’ and Fritz

London. For the first time, the qualitatively correct description of the chemical bond was
obtained. The crucial point turned out to be an inclusion, in addition to the product function
a(1)b(2), its counterpart with exchanged electron numbers a(2)b(1), since the electrons are

48 This is because both electrons reside at the same nucleus.

49 This is because both electrons belong to the same extent to each of the nuclei.

50 Walter Heitler (1904- 1981) was a German chemist and professor at the University in Gottingen, and later he
worked in Bristol and Ziirich.
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indistinguishable. If we expand the Hartree-Fock determinant with doubly occupied bonding
orbital a 4+ b, we would also obtain a certain linear combination of the three structures men-
tioned,”' but with the constant coefficients independent of the interatomic distance:

1
YrREHF = N ( YHL + Y-+ + ‘/"H+H—) 2 (10.29)
NHL

This leads to a very bad description of the H, molecule at long internuclear distances with
the Hartree-Fock method. Indeed, for long internuclear distances, the Heitler-London function
should dominate, because it corresponds to the (correct) dissociation limit (two ground-state
hydrogen atoms). The trouble is that with fixed coefficients, the Hartree-Fock function over-
estimates the role of the ionic structure for long interatomic distances. Fig. 10.5 shows that
the Heitler-London function describes the electron correlation (Coulomb hole), whereas the
Hartree-Fock function does not.

10.9.2 Resonance Theory—Polyatomic Case

The VB method was developed by Linus Pauling with the name of theory of resonance.

Linus Carl Pauling (1901-1994), American physi-
cist and chemist; in the years 1931-1964, he was
a professor at the California Institute of Technol-
ogy in Pasadena; in 1967-1969, he was a pro-
fessor at the University of California, San Diego;
and from 1969-1974 at the Stanford University.
He received the 1954 Nobel prize “for his research
into the nature of the chemical bond and its appli-
cation to the elucidation of the siruciure of com-
plex substances.” In 1962, he received the Nobel  (also called resonance theory), and determining the
peace prize. His major achievements are the devel-  structure of one of the fundamental structural ele-
opment of the theory of chemical bond-the VB method ~ ments of proteins, the ¢—helix.

51 lndeed the normalized Hartree-Fock determinant [double occupation of the molecular orbital ¢; =
m(ﬂ + b), where the overlap integral between the atomic orbitals S = (a|b)] can be rewritten as
vir = L |01 @@

21 e (DB) ¢1(2)B(2)

1
=3415) [a(1)a(2) + b(1)b(2) + a(D)b(2) + a)b(1)] —= [ﬂf(Uﬁ(") —a(2)B()]

1
— 7(14_3‘1[‘&5’ H++1rf‘rH+H +WWHI]



Correlation of the Electronic Motions 613

Fig. 10.5. lustration of electron correlation in the hydrogen molecule. The nuclear positions are ((). 0. () and (4.0.0) in au.
Slater orbitals of 1s type have an orbital exponent equal to 1. (a) Visualization of the xy cross-section of the wave function of
electron 2, assuming that electron 1 resides on the nucleus (either the first or the second one), has spin coordinate o) = é whereas
clectron 2 has spin coordinate oz = —5 and the total wave function is equal v = N{ab + ba + aa + bbH{aff — Pa}; ic, ilis
a Hartree-Fock function. The plot is the same independent of which nucleus electron | resides; i.e., we observe the lack of any
correlation of the motions of electrons | and 2. If we assume the spins to be parallel (0'2 = %) the wave function vanishes. (b) A
similar plot, but for the Heitler-London function gy = Ny [a(1)b(2) 4+ a(2)b(1)] L [e(1)B(2) — ¢(2)B(1)] and with electron
1 residing at nucleus (0, 0, 0). Electron 2 runs to the nucleus in position (4, 0, 0). We have the correlation of the electronic motion.
If we assume parallel spins (Ug = :l_;) the wave function vanishes.

The method can be applied to all molecules, although a particularly useful field of applications
of resonance theory can be found in the organic chemistry of aromatic systems. For example,
the total electronic wave function of the benzene molecule is presented as a linear combination
of resonance structures’:

v=Y @, (10.30)
I

and to each one (in addition to the mathematical form), a graph is assigned. For example, six 7
electrons can participate in the following “adventures” (forming covalent and ionic bonds).

3
2 4 N
L s
@, @, @, @, ®s &

The first two structures are famous Kekulé structures, the next three are Dewar structures,
and the sixth is an example of the possible mixed covalent-ionic structures. From these graphs,
we may deduce which atomic orbitals (out of the 2p. orbital of carbon atoms, z is perpendicular
to the plane of the benzene ring) take part in the covalent bond (of the 7 type). As far as the
mathematical form of the ®; structure is concerned, we can write it as the antisymmetrized

52 Similar to the original applications, we restrict ourselves to the ;r electrons and the o electrons are treated as
inactive in each structure, forming, among other things. the six C—C bonds.
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(cf. antisymmetrization operator; p. €107) product of three Heitler-London functions (involving
the proper pairs of 2 p- carbon atomic orbitals), the first for electrons 1, 2, the second for electrons
3, 4, and the third for 5, 6. Within the functions ®;, the 1onic structures can also occur. The rules
for writing the structures were not quite clear, and the electrons were located to some extent in an
arbitrary manner, making the impression that it is up to theoretical chemists to use their imagina-
tions and draw imaginary pictures. and next to translate them into mathematical form to obtain—
after applying the variational method—an approximation to the wave function (and to the energy).

In fact, the problem is connected to the Ritz method and to expansion into the complete set
of functions’ (i.e., with a purely mathematical problem). Although it may seem very strange
to students (fortunately), many people were threatened for supporting the theory of resonance.
Scientists serving the totalitarian regime decided to attack Eq. (10.30). Why was this>*? The
Stalinists did not like the idea that “the sum of fictitious structures can describe reality.” But wait!
If some artificial functions could interfere with reality, then socialist realism loses to abstraction,
a kolkhoz (collective farm) member to an intellectual, Lysenkoism to Mendelism,”™ gulags to
the idea of freedom, and you are on the brink of disaster (if you are a Stalinist, that is).

3 In principle. they should form the complete set. but even so. in practical calculations, we never deal with true
complete seis.

34 Of course, the true reason was not a convergence of a series in the Hilbert space, but their personal careers at any
price. Totalitarian systems never have problems finding such “scientists.” In chemistry, there was the danger of
losing a job-and in biology, lives were actually at risk.

It is rather difficult to think about Joseph Stalin as a quantum chemist. He was, however, kept informed about
the current situation in the group of people involved in carrying out summation in Eq. (10.30); i.e., working in the
resonance theory. To encourage young people to value and protect the freedom they have, and to reflect on human
nature, some exempts from the resolution adopted by the All Soviet Congress of Chemists of the Soviet Union
are reported. The resolution pertains to the theory of resonance (after the disturbing and reflective book by S.E.
Shnoll, Gherov i zladievi rossiyskov nauki Kron-Press, Moscow, 1997, p. 297):

“Dear Joseph Vissarionovich (Stalin),

the participants of the All Soviet Congress send to you, the Great Leader and Teacher of all progressive
mankind, our warm and cordial greetings. We Soviet chemists gathered together 1o decide, by means of broad
and free discussion, the fundamental problems of the contemporary theory of the structure of molecules, want to
express our deepest gratitude 1o vou for the evervday attention vou pay 1o Soviet science, particularly to chem-
istrv. Our Soviet chemistry is developing in the Stalin era, which offers unlimited possibilities for the progress of
science and industry. Your brilliant work in the field of linguistics put the tasks for still swifter progress in front
of all scientists of our fatherland (...). Motivated by the resolutions of the Central Committee of the Bolshevik
Communist Party concerning ideological matters and by vour instructions, Comrade Stalin, the Soviet chemists
wage war against the ideological concepis of bourgeois science. The lie of the so called “resonance theorv™ has
been disclosed, and the remains of this idea will be thrown away from the Soviet chemistry. We wish vou, our dear
Leader and Teacher, good health and many. many vears of famous life to the jov and happiness of the whole of
progressive mankind (...)."

The events connected with the theory of resonance started in the autumn of 1950 at Moscow University. Quan-
tum chemistry lecturers, Yakov Kivovitch Syrkin and Mirra Yefimovna Diatkina, were attacked. The accusation
was about diffusion of the theory of resonance and was launched by former assistants of Syrkin. Since everything
was in the hands of the professionals, Syrkin and Diatkina confessed guilty to each of the charges.

5 Trofim Lysenko (1898-1976), Soviet scientist of enormous political influence, rejected the genetic laws of Mendel.
In my seventh-grade biology textbook, virtually only his “theory” was mentioned. As a pupil, I recall wanting
to learn this theory. It was impossible to find any information. With difficulty, I finally found something: acorns
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Gregor Johann Mendel (1822-1884), modest Moravian monk,
from 1843 a member of the Augustinian order at Brno from 1843
on (abbot beginning in 1868). His unusually precise and patient
experiments with sweet peas of two colors and seeds of two
degrees of smoothness, allowed him to formulate the princi-
pal laws of genetics. Only in 1900 were his fundamental results
remembered, and since then, the rapid progress of contempo-

rary genetics began.

3
4
g

7

10.10 Configuration Interaction (Cl) Method

In the configuration interaction method,™

the variattonal wave function is a linear combination of Slater determinants constructed
from molecular spinorbitals, Eq. (10.30): ¢ = Z?Jzo cyPy.

In most cases, we are interested in the function v for the electronic ground state of the system
(in addition, when solving the CI equations we also get approximations to the excited states
with different values of the c¢; coefficients).

Generally, we construct the Slater determinants ®; by placing electrons on the molecular
spinorbitals obtained with the Hartree-Fock method,”” in most cases, the set of determinants is
also limited by imposing an upper bound for the orbital energy. In that case, the expansion in
Eq. (10.30) is finite. The Slater determinants ®; are obtained by the replacement of occupied
spinorbitals with virtual ones in the single Slater determinant, which is the Hartree-Fock function

should be placed in a hole in the ground in large numbers to permit something like the class struggle. The winner
will be the strongest oak-tree, which is what we all want.

56 This is also called the method of superposition of configurations or configuration mixing.

57 In this method, we obtain M molecular orbitals; i.e., 2 molecular spinorbitals, where M is the number of
atomic orbitals employed. The Hartree-Fock determinant ®q is the best form of wave function so long as the
electronic correlation is not important. The criterion of this “goodness™ is the mean value of the Hamiltonian.
If we want to include the electron correlation, we may think of another form of the 1-D function more suitable
as the starting point. We do not change our definition of correlation energy; i.e., we consider the RHF energy
as that which does not contain any correlation effects. For instance, we may ask which of the normalized
single-determinant functions & is closest to the normalized exact function 1. As a measure of this, we might use:

[{/|P)| = maximum. (10.31)
The single determinantal function @ = &g, which fulfills the above condition, is called a Bruckner function (O.

Sinanoglu and K.A. Brueckner Three Approaches to Electron Correlation in Aroms Yale Univ. Press, New Haven
and London, 1970).
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(Pg; 1.e., YrEF) In most cases. When one spinorbital is replaced, the resulting determinant is
called singly excited, when two it is doubly excited, etc.”®"?

The virtual spinorbitals form an orthonormal basis in the virtual space. If we carry out any
non-singular linear transformation (cf. p. 467) of virtual spinorbitals, each “new” n-tuply excited
Slater determinant becomes a linear combination of all “old™ n-tuply excited determinants and
only n-tuply excited ones.®” In particular. the unitary transformation would preserve the mutual
orthogonality of the n-tuply excited determinantal functions.

Thus, the total wave function [Eq. (10.30)] is a linear combination of the known Slater
determinants (we assume that the spinorbitals are always known) with unknown ¢ coefficients.

The name of the CI methods refers to the linear combination of the configurations rather than
to the Slater determinants.

A configuration (i.e., a configuration state function, or CSF) is a linear combination of
determinants that is an eigenfunction of the operators: 52 and S:, and belongs to the proper
irreducible representation of the symmetry group of the Hamiltonian. We say that this is
a linear combination of the (spatial and spin) symmetry adapted determinants. Sometimes
we refer to the spin-adapted configurations, which are eigenfunctions only of the $2 and
.§: operators.

The particular terms in the CI expansion may refer to the respective CSFs or to the Slater
determinants. Both versions lead to the same results, but using CSFs may be more efficient

58 Inthe language of the second quantization (see Appendix U available at booksite.elsevier.com/978-0-444-59436-5,
p. €153), the wave function in the CI method has the form (the &g function is a Slater determinant which does
not necessarily need to be a Hartree-Fock determinant):

v =P+ Y chplado+ Y cha'plabdg
a,p a<b.p<gqg

+ higher excitations, (10.32)

where ¢ are the expansion coefficients, the creation operators QT 5 [)T , . . . refer to the virtual spinorbitals ¢p, ¢y, . ..
and the annihilation operators a, b, ... refer to occupied spinorbitals ¢, ¢, . . . (the operators are denoted with
the same indices as spinorbitals but the former are equipped with hat symbols), and the inequalities satisfied by
the summation indices ensure that the given Slater determinant occurs only once in the expansion.

59 The Hilbert space corresponding to N electrons is the sum of the orthogonal subspaces £2,,n = 0,1,2,... N,
which are spanned by the n-tuply excited (orthonormal) Slater determinants. Elements of the space €, are all
linear combinations of n-tuply excited Slater determinants. It does not mean, of course, that each element of this
space is an n-tuply excited Slater determinant. For example, the sum of two doubly excited Slater determinants is
a doubly excited Slater determinant only when one of the excitations is common to both determinants.

60 Indeed, the Laplace expansion (see Appendix A available at booksite.elsevier.com/978-0-444-59436-5) along the
row corresponding to the first new virtual spinorbital leads to the linear combination of the determinants containing
new (virtual, which means that the rank of excitation is not changed by this) orbitals in this row. Continuing this
procedure with the Slater determinants obtained, we finally get a linear combination of n-tuply excited Slater
determinants expressed in old spinorbitals.
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if we are looking for a wave function that transforms itself according to a single irreducible
representation.

Next, this problem is reduced to the Ritz method (see Appendices L, p. e107 and K, p. e105),
and subsequently to the secular equations (H — €S) ¢ = 0. It is worth noting here that, e.g., the
CI wave function for the ground state of the helium atom would be linear combinations of the
determinants where the largest ¢ coefficient occurs in front of the ¢ determinant constructed
(say from the spinorbitals 1s« and 1s8), but the nonzero contribution would also come from the
other determinants constructed from the 2sa and 2s 8 spinorbitals (one of the doubly excited
determinants). The CI wave functions for all states (ground and excited) are linear combinations
of the same Slater determinants; they differ only in the ¢ coefficients.

The state energies obtained from the solution of the secular equations always approach the
exact values from above.

10.10.1 Brillouin Theorem

In the CI method, we have to calculate matrix elements H;; of the Hamiltonian.

The Brillouin theorem says that
(Po|HP;) =0 (10.33)

if ®¢ is a solution of the Hartree-Fock problem (®g = Y rur), and @y is a singly excited
Slater determinant in which the spinorbital ¢+ is orthogonal to all spinorbitals used in ®g.

Proof:
From the second Slater-Condon rule (see Appendix M available at booksite.elsevier.com/
978-0-444-59436-5 p. €109), we have

(ol H®1) = (ilhi'y + Y [(ijli'j) — (ijlji’")] - (10.34)
i

On the other hand, considering the integral (i |13 i’y, where F is a Fock operator, we obtain
from 8.28 (using the definition of the Coulomb and exchange operators from p. 403):

(@1 Fi'y = (ilhi"y + ) [Ty — 1K' = (ilhi"y + ) [(ijli'f) — (i1 ji')] = (Dol HDy).
i J
From the Hermitian character of F , 1t follows that

(i|Fi'y = (Fili’) = &8; = 0. (10.35)

We have proved the theorem.
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The Brillouin theorem is sometimes useful in discussion of the importance of particular terms
in the CI expansion for the ground state.

10.10.2 Convergence of the Cl Expansion

Increasing the number of expansion functions by adding a new function lowers the energy
(due to the variational principle). It often happens that the inclusion of only two determinants
gives qualitative improvement with respect to the Hartree-Fock method; however, when going
further, the situation becomes more difficult. The convergence of the CI expansion is slow
(i.e.. to achieve a good approximation to the wave function), the number of determinants in the
expansion must usually be large. Theoretically, the shape of the wave function ensures solution
of the Schrédinger equation Hyr = E, but in practice, we are always limited by the basis of
the atomic orbitals employed.

To obtain satisfactory results, we need to increase the number M of atomic orbitals in
the basis. The number of molecular orbitals produced by the Hartree-Fock method is also

equal to M, hence the number of spinorbitals is equal to 2M. In this case, the number of

all determinants is equal to (2}‘34 ) where N refers to the number of electrons.

10.10.3 Example of H,O

We are interested in the ground state of the water molecule, which is a singlet state (S = 0,
Mg = 0).

The minimal basis set, composed of seven atomic orbitals (two 1s orbitals of the hydrogen
atoms, ls, 2s, and three 2p orbitals of the oxygen atom), is considered too poor; therefore,
we prefer what is called the double dzeta basis, which provides two functions with different
exponents for each orbital of the minimal basis. This creates a basis of M = 14 atomic orbitals.
There are 10 electrons, so (%g) gives 13 million Slater determinants. For a matrix of that size
to be diagonalized is certainly impressive. Even more impressive is that we achieve only an
approximation to the correlation energy which amounts to about 50% of the exact correlation
energy,®! since M is only equal to 14, but in principle, it should be equal to co. Nevertheless,
for comparative purposes, we assume that the correlation energy obtained is 100%.

The simplest remedy is to get rid of some determinants in such a way that the correlation
energy is not damaged. Which ones? Well. many of them correspond to the incorrect projection
S- of the total spin or the incorrect total spin S. For instance, we are interested in the singlet
state (i.e., S = 0 and S- = 0), but some determinants are built of spinorbitals containing
exclusively « spin functions. This is a pure waste of resources, since the non-singlet functions

61 We see here how vicious the dragon of electron correlation is.
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do not make any contributions to the singlet state. When we remove these and other incorrect

determinants, we obtain a smaller matrix to be diagonalized. The number of Slater determinants
2
with S- = Ocquals ( A?;{Q) . In our case, this makes slightly over 4 million determinants (instead

of 13 million). What would happen if we diagonalized the huge original matrix anyway? Well,
nothing would happen. There would be more work, but the computer would create the block
for.r'nr“ﬂ from our enormous matrix, and each would correspond to the particular $? and S-,
while the whole contribution to the correlation energy of the ground state comes from the block
corresponding to S = 0 and S. = 0.

Let us continue throwing away determinants. This time, however, we have to make a compro-
mise; i.e.. some of the Slater determinants are arbitrarily considered not to be important (which
will worsen the results, if they are rejected). Which of the determinants should be considered as
not important? The general opinion in quantum chemistry is that the multiple excitations are less
and less important (when the multiplicity increases). If we take only the singly. doubly. triply.
and quadruply excited determinants, the number of determinants will reduce to 25000 and we
will obtain 99% of the approximate correlation energy defined above. If we take the singly and
doubly excited determinants only, there are only 360 of them, and 94% of the correlation effect
is obtained. This is why this CI Singles and Doubles (CISD) method is used so often.

For larger molecules, this selection of determinants becomes too demanding, thercfore we
have to decide individually for each configuration: to include or reject it? The decision is made
cither on the basis of the perturbational estimate of the importance of the determinant® or by
a test calculation with inclusion of the determinant in question (see Fig. 10.6).

To obtain good results, we need to include a large number of determinants (e.g., of the
order of thousands, millions, or even billions). This means that contemporary quantum chem-
istry has made enormous technical progress.®! This, however, is a sign, not of the strength of
quantum chemistry, but of its weakness. What are we going to do with such a function? We
may load it back into the computer and calculate all the properties of the system with high
accuracy (although this cannot be guaranteed). To answer the question about why we obtained
some particular numbers, we have to answer that we do not know—it is the computer that
knows. This is a trap. It would be better to get. say. two Slater determinants. which describe
the system to a reasonable approximation, and we can understand what is going on in the
molecule.

62 These square blocks would be easily noticed after proper ordering of the expansion functions.

63 The perturbational estimate mentioned relies on the calculation of the weight of the determinant based on the first-
order correction to the wave function in perturbation theory (p. 245). In such an estimate, the denominator contains
the excitation energy evaluated as the difference in orbital energies between the Hartree-Fock determinant and
the one in question. In the numerator, there is a respective matrix element of the Hamiltonian calculated with the
help of the known Slater-Condon rules (see Appendix M available at booksite.elsevier.com/978-(-444-59436-5,
p- €109).

64 To meet such needs, quantum chemists have had to develop entirely new techniques of applied mathematics.
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(b)

Fig. 10.6. Symbolic illustration of the principle of the CI method with one Slater determinant ®g dominant in the ground state
(this is a problem of the many electron wave functions so the picture cannot be understood literally). The purpose of this diagram
is to emphasize a relatively small role of electronic correlation (more exactly, of what is known as the dvnamical correlation; i.e.,
correlation of electronic motion). The function iy is a linear combination (the ¢ coefficients) of the determinantal functions of
different shapes in the many-electron Hilbert space. The shaded regions correspond to the negative sign of the function; the nodal
surfaces of the added functions allow for the effective deformation of 1y to have lower and lower average energy. (a) Since ¢ is
small in comparison to cp, the result of the addition of the first two terms is a slightly deformed . (b) Similarly, the additional
excitations just make cosmetic changes in the function (although they may substantially affect the quantities calculated with it).

10.10.4 Which Excitations Are Most Important?

The convergence can be particularly bad if we use the virtual spinorbitals obtained by the Hartree-
Fock method. Not all excitations are equally important. It turns out that usually, although this
is not a rule, low excitations dominate the ground-state wave function.®> The single excitations
themselves do not contribute anything to the ground-state energy (if the spinorbitals are gen-
erated with the Hartree-Fock method, then the Brillouin theorem mentioned above applies).
They are crucial, however, for excited states or in dipole moment calculations. For the ground
state, only when coupled to other types of excitation do they assume nonzero (although small)
contribution. Indeed, if in the CI expansion we only use the Hartree-Fock determinant and the
determinants corresponding to single excitations, then, due to the Brillouin theorem, the secular
determinant would be factorized.® This factorization (Fi g. 10.7) pertains to the single determi-
nant corresponding to the Hartree-Fock function and to the determinants corresponding exclu-
sively to single excitations. Since we are interested in the ground state, only the first determinant

65 Thatis, those that require the lowest excitation energies. Later, a psychological mechanism began to work supported
by economics: the high-energy excitations are numerous and, because of that, very expensive and they correspond
to a high number of electrons excited. Due to this, a reasonable restriction for the number of configurations in the
CI expansion is excitation rank. We will come back to this problem later.

66 That i, it could be written in block form. which would separate the problem into several smaller subproblems.
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Fig. 10.7. The block structure of the Hamiltonian matrix (#) is the result of the Slater-Condon rules (see Appendix M available
at booksite elsevier.com/Y78-0-444-59436-5, p. el19). S indicates single excitations, D indicates double excilations, T indicates
triple excitations, and Q indicates quadruple excitations. () A block of zero values due to the Brillouin theorem. (b) A block of zero
values due to the fourth Slater-Condon rule, (II) the nonzero block obtained according to the second and third Slater-Condon rules,
(III) the nonzero block obtained according to the third Slater-Condon rule. All the nonzero blocks are sparse matrices dominated
by zero values. which is important in the diagonalization process.

1s of importance to us. and the result does not change whether we include or not a contribution
coming from single excitations into the wave function.

Usually, performing CI calculations with the inclusion of all excitations (for the assumed
value of M; i.e.. the full CI). is not possible in practical calculations due to the extremely long
expansion. We are forced to truncate the CI basis somewhere. It would be good to terminate it in
such a way that all essential terms are retained. The problem with this, however, is determining
what we mean by essential. The most significant terms for the correlation energy come from
the double excitations since these are the first excitations coupled to the Hartree-Fock function.
Smaller, although important, contributions come from other excitations (usually of low excita-
tion rank). We certainly wish that it would be like this for large molecules. Nobody knows what
the truth is.

10.10.5 Natural Orbitals (NOs)

The fastest convergence is achieved in the basis set of natural orbitals (NOs): i.e.. when we con-
struct spinorbitals with these orbitals and from them the Slater determinants. The NO is defined
a posteriori in the following way. After carrying out the CI calculations, we construct the density
p (see Appendix S available at booksite.elsevier.com/978-0-444-59436-5. p. €143) as follows:

p(1)=N f?/f*(l,l 3,...N¥(A,2,3,..., N)drdrs - - -dzy

= Y Dj¢r(h¢;(1); Dy =D, (10.36)

ij
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where the summation runs over all the spinorbitals. By diagonalization of matrix D (a rotation
in the Hilbert space spanned by the spinorbitals), we obtain the density expressed in the natural
spinorbitals (NOs) transformed by the unitary transformation

p(1) = (Daiag)iit}" (D} (1). (10.37)

The mostimportant ¢’; from the viewpoint of the correlation are the NOs with large occupancies;
i.e., (Dgiag)ii values. Inclusion of only the most important ¢'; in the CI expansion creates a
short and quite satisfactory wave function.®’

10.10.6 Size Inconsistency of the Cl Expansion

A truncated CI expansion has one unpleasant feature that affects the applicability of the method.

Let us imagine that we want to calculate the interaction energy of two beryllium atoms, and
that we decide that to describe the beryllium atom, we have to include not only the 152252
configuration, but also the doubly excited one, 15?2 p?. In the case of beryllium, this is a very
reasonable step, since both configurations have very close energies. Let us assume now that we
calculate the wave function for twe beryllium atoms. If we want this function to describe the
system correctly, also at large interatomic distances, we have to make sure that the departing
atoms have appropriate excitations at their disposition (i.e., in our case 1s22p? for each). To
achieve this, we must incorporate quadruple excitations into the method.%*

If we include quadruples, we have a chance to achieve (an approximate) size consistency;
L.€., the energy will be proportional to good accuracy to the number of atoms, or else our
results will not be size consistent.

Let us imagine 10 beryllium atoms. In order to have size consistency we need to include
20-fold excitations. This would be very expensive. We clearly see that, for many systems, the
size consistency requires inclusion of multiple excitations. If we carried out CI calculations for
all possible (for a given number of spinorbitals) excitations. such a CI method (i.e.. FCI) would
be size consistent.

10.11 Direct Cl Method

We have already mentioned that the CI method converges slowly. Due to this, the Hamiltonian
matrices and overlap integral matrices are sometimes so large that they cannot fit into the

67 Approximate natural orbitals can also be obtained directly without performing the CI calculations.

68 See JA. Pople, R. Seeger, and R. Krishnan, Intern. J. Quantum Chem. S11, 149 (1977), as well as p. 47 of the
book by P. Jgrgensen and J. Simons Second Quantization—Based Methods in Quantum Chemistry Academic Press
(1981).
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computer memory. In practice, such a situation occurs in all high-quality calculations for small
systems and in all calculations for medium and large systems. Even for quite large atomic orbital
basis, the number of integrals is much smaller than the number of Slater determinants in the CI
expansion.

Bjorn Roos™ first noticed that to find the lowest eigenvalues and their eigenvectors, we
do not need to store a huge H matrix in computer memory. Instead. we need to calculate the
residual vector 0 = (H — E1)c, where ¢ is a trial vector (defining the trial function in the
variational method, p. 232). If ¢ = (), it means that the solution is found. Knowing o, we may
find (on the basis of first-order perturbation theory) a slightly improved ¢, etc. The product
Hc can be obtained by going through the set of integrals and assigning to each a coefficient
resulting from H and ¢, and next adding the results to the new ¢ vector. Then the procedure 1s
repeated. Until 1971, CI calculations with 5000 configurations were considered a significant
achievement. After Roos’s paper, there was a leap of several orders of magnitude, bringing the

69

number of configurations to the range of billions. For the computational method, this was a
revolution.

10.12 Multireference CI Method

Usually in the CI expansion, the dominant determinant is Hartree-Fock. We construct the CI
expansion, replacing the spinorbitals in this determinant (single reference method). We can
easily imagine a situation in which taking one determinant is not justified, since the shell is not
well closed (e.g., four hydrogen atoms). We already know that certain determinants (or, in other
words: configurations) absolutely need be present (“static correlation™) in the correct wave
function. To be sure, we are the judges, deciding which is good or bad. This set of determinants
is a basis in the model space.

In the single reference CI method. the model space (Fig. 10.8) is formed by a single
Slater determinant. In the multireference CI method, the set of determinants constitute the
model space. This time, the CI expansion is obtained by replacement of the spinorbitals
participating in the model space by other virtual orbitals. We proceed further as in CI.

There is no end to the problems yet, since again, we have billions of possible excitations.”’

We do other tricks to survive in this situation. We may. for instance, get the idea not to excite

%9 B.0. Roos, Chem. Phys. Letters, 15, 153 (1972).

70 There is another trouble too called intruder states; i.e., states that are of unexpeciedly low energy. How could
these states appear? First, the CI states known as “front-door intruders” appear if some important (low-energy)
configurations were for some reason not included into the model space. Second, we may have the “back-door
intruder” stales, when the energy gap between the model space and the other configurations was too small (quasi-
degeneracy), and some CI states became of low energy (enter the model space energy zone) even if they are not
composed of the model space configurations.
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Fig. 10.8. [lustration of the model space in the multireference CI method used mainly in the situation when no single Slater
determinant dominates the CI expansion. The orbital levels of the system are presented here. Part of them are occupied in all Slater
determinants considered (“frozen spinorbitals™). Above them is a region of closely spaced orbital levels called active spuce. In the
optimal case. a significantly large energy gap occurs between the latter and unoccupied levels lying higher. The model space is
spanned by all or some of the Slater determinants obtained by various occupancies of the active space levels.

the inner-shell orbitals, since the numerical effort is serious. the lowering of the total energy
can also be large, but the effect on the energy differences (this is what chemists are usually
interested in) is negligible. We say that such orbitals are frozen. Some of the orbitals are kept
doubly occupied in all Slater determinants but we optimize their shape. Such orbitals are called
inactive. Finally, the orbitals of varied occupancy in different Slater determinants are called
active. The frozen orbitals are, in our method, important spectators of the drama, the inactive
orbitals contribute a little toward lowering the energy, but the most efficient work is done by the
active orbitals.

10.13 Multiconfigurational Self-Consistent Field Method (MC SCF)

In the configuration interaction method, it is sometimes obvious that certain determinants of
the CI expansion must contribute to the wave function if the latter is to correctly describe the
system. For example, if we want to describe the system in which a bond is being broken (or is
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being formed), for its description, we need several determinants for sure (cf. the description of
the dissociation of the hydrogen molecule on p. 437).

Why is this? In the case of the dissociation with which we are dealing here, there is a quaside-
generacy of the bonding and antibonding orbital of the bond in question; i.e., the approximate
equality of their energies (the bond energy is of the order of the overlap integral and the latter
goes to zero when the bond is being broken). The determinants. which can be constructed by
various occupancies of these orbitals, have very close energies and, consequently, their contri-
butions to the total wave function are of similar magnitude and should be included in the wave
function.

In the multiconfigurational self-consistent field (MC SCF) method, as in Cl, it is up to us to
decide which set of determinants we consider sufficient for the description of the system.

Each of the determinants is constructed from molecular spinorbitals that are not fixed (as
in the CI method) but are modified in such a way as to have the total energy as low as
possible.

The MC SCF method is the most general scheme of the methods that use a linear combination
of Slater determinants as an approximation to the wave function. In the limiting case of the MC
SCF, when the number of determinants is equal to 1, we have, of course, the Hartree-Fock
method.

10.13.1 Classical MC SCF Approach

We will describe first the classical MC SCF approach, which is a variational method. As was
mentioned, the wave function in this method has the form of a finite linear combination of Slater
determinants &

V=) di¥y, (10.38)
1
where d are variational coefficients.

In the classical MC SCF method, we do the following:

1. Take afinite CI expansion (the Slater determinants and the orbitals for their construction

are fixed)

2. Calculate the coefficients for the determinants by the Ritz method (the orbitals do not
change)

3. Vary the LCAO coefficients in the orbitals at the fixed CI coefficients to obtain the best
MOs

4. Return to point | until self-consistency is achicved
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10.13.2 Unitary MC SCF Method

Another version of the MC SCF problem, a unitary method suggested by Lévy and Berthier’' and
later developed by Daalgaard and Jgrgensen, ' is gaining increasing importance. The eigenvalue
problem does not appear in this method.

We need two mathematical facts to present the unitary MC SCF method. The firstis a theorem:

If A is a Hermitian operator (1.c., At = ﬁ), then U = exp ( AA) 1s a unitary operator satisfying
Uty =1.

Let us see how UT looks:

A s & Loess T sa ¥

Y Z(eXp(tA)) = [1+iA+5GA)" + 553 A) +)
:(1+(—f)AT L —iA"y? 5 ( AT )
= (1 + (-)A + 5(-:‘/3)2 + ﬁ(—;A")-q +) = exp (—i A)

Hence, UUT = 1;ie.,Uisa unitary operator.’”
Now we will look at the second mathematical fact, which is a commutator expansion:

Al = A +(A. A]+—[[H Al, A1+ —[[[H Al AL Al +-- (10.39)

This theorem can be proved by induction, expanding the exponential functions.
Now we are all set to describe the unitary method. We introduce two new operators:

h= ZA,J; (10.40)

where T and ] are the creation and annihilation operators, respectively, associated to spinorbitals
i, j (see Appendix U available at booksite.elsevier.com/978-0-444-59436-5). Further,

$=2 Sul®n(@yl. (1041)
1y

g, Lévy and G. Berthier, Intern. J. Quantum Chem., 2, 397 (1968).
72 E, Dalgaard and P. Jgrgensen, J. Chem. Phys., 69, 3833 (1978).

73 1s an operator (f‘ )} of mulnphcanon by a constant Hermitian? Let us see: ((p|é ) 1(@ ¢l¢r); Lhs = (ga|c W) =
r(gawf) rhs. = (c|Y) = c*(p|¢r). Lhs.=rhs., if ¢ = ¢*. An operator (.(mjugdle 1o ¢ is, therefore, c*. Further,
if B = iA, what is a form of BT? We have (b-Tgaw;) (@B|Y), then (pliAly) = (—iATg|y), and finally
Bt = —iAl.
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We assume that A;; and S; ; are elements of the Hermitian matrices’* (their determination is the
goal of the whole method), and ®; are determinants from the MC SCF expansion [Eq. (10.38)].

It can be seen that the A operator replaces a single spinorbital in a Slater determinant
and forms a linear combination of such modified determinantal functions; the S operator
replaces such a combination with another. The “knobs™ that control these changes are
coefficients A;; and Sy ;.

We will need the unitary transformations exp (i 2) and exp (i 3’). They are very convenient,
since when starting from some set of the orthonormal functions (spinorbitals or Slater determi-
nants) and applying this transformation, we always retain the orthonormality of new spinorbitals
(due to i) and of the linear combination of determinants (due to S). This is an analogy to the
rotation of the Cartesian coordinate system. It follows from the above equations that exp (i i)
modifies spinorbitals (i.e., operates in the one-electron space), and exp (i S ) rotates the determi-
nants in the space of many-electron functions.

Now we suggest the form of our variational function for the ground state:

10) = cXp (r'i) cXp (iS')lO), (10.42)

where |0) denotes a starting combination of determinants with specific spinorbitals and the
matrices A and S contain the variational parameters. So, we modify the spinorbitals and change
the coefficients in front of the determinants to obtain a new combination of the modified deter-

minants, |0). The mean energy value for that function is’>

E = (0|H|0) = (0] exp (—iS) exp (—ir) H exp (i1) exp (i $)]0), (10.43)

Taking advantage of the commutator expansion [Eq. (10.39)], we have

% N . A 1 R R R 1 T
E = (0|H10) = i{0I[S + 4, A110) + (0L, [A, $1110) + 5 (OI[3, 1A, A1110)
+(OILS, [H, A110) + - - -

It follows from the last equation that in order to calculate E. we have to know the result of
the operation of A on |0} (i.e., on the linear combination of determinants), which comes down
to the operation of the creation and annihilation operators on the determinants, which is simple.
It can also be seen that we need to apply the operator S to |0), but its definition shows that this

1 Considering the matrix elements of the operators ) and S . we would easily be convinced that both operators are
also Hermitian.
75 Here, we use the equality [exp (i A)]T = exp (—i A).
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76 can now be optimized; i.e., the best Hermitian matrices A and S can

is trivial. This expression
be selected. It is done in the same step (this distinguishes the current method from the classical
one). Usually the calculations are carried out in the matrix form, neglecting the higher terms
and retaining only the quadratic ones in S and A. Neglecting the higher terms is equivalent to
allowing for very small rotations in Eq. (10.42), but instead we have a large number of rotations
(iterative solution).”’

The success of the method depends on the starting point. The latter strongly affects the energy
and its hypersurface (in the space of the parameters of the matrices A and S) is very complicated,
it has many local minima. This problem is not yet solved, but various procedures accelerating the
convergence are applied; e.g., the new starting point is obtained by averaging the starting points
of previous iterations. The method also has other problems, since the orbital rotations partially
replace the rotation in the space of the Slater determinants (the rotations do not commute and
are not independent). In consequence, linear dependencies may appear.

10.14 Complete Active Space SCF (CAS SCF) Method

An important special case of the MC SCF method is the complete active space SCF (CAS SCF)
method of Roos, Taylor, and Siegbahn (see Fig. 10.9).”% Let us assume that we are dealing
with a closed-shell molecule. The RHF method (p. 394) provides the molecular orbitals and
the orbital energies. From them, we select the low-energy orbitals. Part of them are inactive;
i.e., they are doubly occupied in all determinants, but they are varied, which results in lowering
the mean value of the Hamiltonian (some of the orbitals may be frozen—i.e., kept unchanged).
These are the spinorbitals corresponding to the inner shells. The remaining spinorbitals belong
to the active space. Now we consider all possible occupancies and excitations of the active
spinorbitals (this is where the adjective complete comes from) to obtain the set of determinants
in the expansion of the MC SCF. By taking all possible excitations within the active space, we
achieve a size consistency; i.e., when dividing the system into subsystems and separating them
(infinite distances) we obtain the sum of the energics calculated for cach subsystem separately.
By taking the complete sct of excitations, we also determine that the results do not depend on
any (non-singular) linear transformation of the molecular spinorbitals within the given subgroup

76 The term with i gives a real number
i - OI[8 + 5., A110) = i - (((8 + 1)0|A0) — (HO|(S + 1)0)) — i - (z — z¥) = i (2iImz) € R,

where R is a set of real numbers.

77 In the classical MC SCF method, when minimizing the energy with respect to the parameters, we use only linear
terms in the expansion of the energy with respect to these parameters. In the unitary formulation, on the other
hand, we use both linear and quadratic terms. This implies much better convergence of the unitary method.

78 B.0O. Roos and PE.M. Siegbahn, in Modern Theoretical Chemistry vol. IIL, ed. H.F. Schaefer, Plenum Press, New
York (1977); PE.M. Siegbhahn, J. Chem. Phvs., 70, 5391 (1979); B.O. Roos, PR. Taylor and PE.M. Siegbahn,
Chem. Phys., 48. 157 (1980).
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MC SCF Slater determinants
Fig. 10.9. CAS SCF, a method of construction of the Slater determinants in the MC SCF expansion. The inner-shell orbitals are
usually inactive. From the active space + inactive spinorbitals, we create the complete set of possible Slater determinants to be
used in the MC SCF calculations. The spinorbitals of the energy higher than a certain selected threshold are entirely ignored in the
calculations.

inactive orhitalc active space
1
1

of orbitals (i.e., within the inactive or active spinorbitals). This makes the result invariant with
respect to the localization of the molecular orbitals.

NON-VARIATIONAL METHOD WITH SLATER
DETERMINANTS

10.15 Coupled Cluster (CC) Method

The CC method is the most reliable one among quantum mechanical methods applied to chem-
1stry today.

The problem of many-body correlation of motion of anything is extremely difficult and so far
unresolved (e.g., weather forecasting). The problem of electron correlation also seemed to be
hopelessly difficult. It still remains that way; however, it turns out that we can exploit a certain
observation made by Sinanoghu.”® This author noticed that the major portion of the correlation
is included through the introduction of correlation within electron pairs, next through pair-pair
interactions, then pair-pair-pair interactions, etc. The canonical molecular spinorbitals, which we
can use, are in principle delocalized over the whole molecule, but practically the delocalization
is not so large. Even in the case of canonical spinorbitals. and certainly when using localized
molecular spinorbitals, we can think about an electron excitation as a transfer of an electron

Bo. Sinanoglu and K.A. Brueckner, Three Approaches to Electron Correlation in Aroms Yale University Press,
New Haven and London (1970).
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Fig. 101.10. Inorderto include the electron correlation, the wave function should somehow reflect the fact that electrons aveid each
other. Electron 1 jumping from A (an orbital) to B {another orbital) should make electron 2 escape from C (close to B) to D (close
to A). This is the very essence of electron correlation. The other orbitals play a role of spectators. However, the spectators change
upon the excitations described above. These changes are performed by allowing their own excitations (symbolized by changing
from the solid line to the dashed line on the right side). This is how triple. quadruple. and higher excitations emerge and contribute
to electronic correlation.

from one place in the molecule to another. Inclusion of the correlation of electronic motion
represents, in the language of electron excitations, the following philosophy: when electron 1
jumps from an orbital localized in place A to an orbital localized in place B. it would be good
from the point of view of the variational principle if electron 2 jumped from the orbital localized
at C to the orbital localized at D (see Fig. 10.10).

The importance of a given double excitation depends on the energy connected with the
electron relocation and the arrangement of points A,B,C,D. Yet this simplistic reasoning suggests
single excitations do not carry any correlation (this is confirmed by the Brillouin theorem) and
this 1s why their role is very small in the ground state. Morcover, it also suggests that double
excitations should be very important.

10.15.1 Wave and Cluster Operators

We start by introducing a special Slater determinant, the reference determinant (called the
vacuum state, which can be the Hartree-Fock determinant) @, and we write that the exact wave



Correlation of the Electronic Motions 631

function for the ground state is

¥ = exp (f)(Dg (10.44)

where exp (T') is a wave operator, and T itself is a cluster operator. In the CC method, an
intermediate normalization™ of the function ¥ 1s assumed; iLe.,

(Y|1Po) = 1.

Equation (10.44) represents a very ambitious task. It assumes that we will find an operator
T such that the wave operator (eT), as with the touch of a wizard’s wand, will make an 1deal
solution of the Schrodinger equation from the Hartree-Fock function. The formula with exp (?A")
is an Ansatz. The charming sounding word Ansatz®' can be translated as an arrangement or
order, but in mathematics, the term refers to the construction assumed.

In the research literature, we use the argument that the wave operator ensures the size consis-
tency of the CC. According to this reasoning, for an infinite distance between molecules A and
B, both ¥ and ®( functions can be expressed in the form of the product of the wave functions for
A and B. When the cluster operator is assumed to be of the form (obvious for infin ltely separated
systems) T = TA + TB, then the exponential form of the wave operator exp (TA + TB) ensures a
desired form of the product 01 the wave function [exp (T,-, + TB)]Q)U = exp TA exp TB Pg. If we
took a finite CI expansion: (TA + TB)(D(), then we would not get the product but the sum which
is incorrect. In this reasoning, there is an error, since due to the Pauli principle (antisymmetry
of the wave function with respect to the electron exchange). over long distances, neither the
function v nor the function P is the product of the functions for the subsystems.*? Although
the reasoning is not quite correct, the conclusion is correct, as will be shown at the end of the
description of the CC method shortly.

The CC method is automatically size consistent.

As a cluster operator 7, we assume a sum of the excitation operators (sce Appendix U
available at booksite.clsevier.com/978-0-444-59436-5):

T=Ti+D+T+ - +T,, (10.45)
where
= Zr;?'*'a (10.46)

a,r

80 1t contributes significantly to the numerical efficiency of the method.
81 This word has survived in the literature in its ori ginal German form.
82 For instance, the RHF function for the hydrogen molecule is not a product function for long distances: see p. 610.
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1s an operator for single excitations,

Z es5titab, (10.47)
r .5

is an operator for double excitations, ctc. The subscript I = 1, 2, ..., [hax In f} indicates the
rank of the excitations involved (with respect to the vacuum state). The symbols a, b, . . . refer
to the spinorbitals occupied in ®g. and p. g.r.s, ... refer to the virtual ones, and

t represents amplitudes (i.e., the numbers whose determination is the goal of the CC
method). The rest of this chapter will be devoted to the problem of how to obtain these
miraculous amplitudes.

In the CC method, we want to obtain correct results with the assumption that lyax
of Eq. (10.45) is relatively small (usually 2 = 5). If [,nx were equal to N (i.e., to the num-
ber of electrons), then the CC method would be identical to the full (usually unfeasible) CI
method.

10.15.2 Relationship Between Cl and CC Methods

Obviously, there is a relation between the CI and CC methods. For instance, if we write

exp (f")d)o in such a way as to resemble the CI expansion

- - ~ ~ 1 - ~ ~
exp(T)d)O:[l+(T1—I-T2—I—T3—I—---)+E(TI+T2+T3+"')2+"']¢0
=(1+C1+Cr+C3+--- )0, (10.48)

the operators é; (index i denoting the excitation rank: / = 1 for singles, i = 2 for double, etc.),
pertaining to the CI method, have the following structure:

Ci=T1

C, =T 11"2

2 = 2+21

~ N 1 ~ A
C3=T3+§Tl + N1

Y e 1
Co=Ta+ =T+ T2+ BN+~ T1 T (10.49)
4! 2! 2!
(10.50)

We see that the multiple excitations G lCSUlt from mathematically distinct terms; e.g., C3 is
composed of triple excitations Tq Ti"q and Tl TQ
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Fig. 10.11. Why such a name? An artistic impression on coupled clusters.

On the basis of current numerical expelience,R'3 we believe that, within the excitation of a
given rank, the contributions coming from the correlational interactions of the electron pairs are
the most important; e.g., within Cy, the %f”zz excitations containing the product of amplitudes
for two electron pairs are the most important, 'f"4 (which contains the amplitudes of quadruple
excitations) is of little importance, since they correspond to the coupling of the motions of four
electrons, and the terms ff‘ ff; fl and f’f f’g can be made small by using the MC SCF orbitals.
Contemporary quantum chemists use diagrammatic language following Richard Feynman. The
point is that the mathematical terms (the energy contributions) appearing in CC theory can be
translated one by one into the figures according to certain rules. It turns out that it is much easier
to think in terms of diagrams than to speak about the mathematical formulae or to write them
out. The coupled cluster method. terminated at 75 in the cluster operator automatically includes
'f22, etc. We may see in it some resemblance to a group of something (excitations), or in other
words to a cluster (see Fig.10.11).

10.15.3 Solution of the CC Equations

The strategy of the CC method is the following: first, we make a decision with respect to [,
in the cluster expansion 10.45 (/;nax should be small®®).
The exact wave function exp (7)) P satisfies the Schrodinger equation; i.e.,

H exp (f‘)d)o = Eexp (]‘F)(Do, (10.51)
which, after operating from the left with exp (— 7) gives

exp (—T)H exp (T)®y = Edy (10.52)

83 This is a contribution by Oktay Sinanoglu; O. Sinanoglu, and K.A. Brueckner (ed.), Three Approaches to Electron
Correlation in Atoms Yale University Press, New [Haven and London (1970).
= Only then is the method cost-effective.
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The exp (—f)}fl exp (f") operator can be expressed in terms of the commutators [see
Eq. (10.39))%:
= N S D S S S R S SR S SRS
He' = H+[H,T|+ EHH’ T, T]+ alllH, T, T, T)+ E[II[H, T}, T], T), T}
(10.53)
The expansion of Eq. (10.53) is finite (justification can be only diagrammatic) since in the
Hamiltonian H, we have only two-particle interactions.
Multiplying Eq. (10.52) from the left by the function (7;"| representing the determinant
obtained from the vacuum state by the action of the excitation operator with the annihilators
a, )';, ... and creators At m', ... and integrating, we obtain one equation for each function

used®°:

- exp (—T) H exp (T)|®o) = 0 (10.54)

where we have zero on the right side due to the orthogonality. The Slater determinants |.")
represent all excitations from ®g resulting from the given cluster expansion T=T+T -+
?}mx This is the fundamental equation of the CC method. For such a set of excited configurations
the number of CC equations is equal to the number of the amplitudes sought.

mn..
tﬂb

wave operator [Eq. (10.44)] and wave function for the ground state ¥ = 1. The equations
that we get in the CC method are nonlinear

are unknown quantities; i.c., amplitudes determining the 7}, and, consequently, the

since the s occur at higher powers than the first [which can be seen from Eq. (10.54) that the
highest power of ¢ is 4]. which. on one hand. requires much more demanding and capricious (than
linear ones) numerical procedures, and, on the other, contributes to the greater efficiency of the
method. The number of such equations often exceeds 100000 or a million.*” These equations
are solved iteratively assuming certain starting amplitudes ¢ and iterating the equations until
self-consistency.

We hope that in such a procedure, an approximation to the ground-state wave function is
obtained, although sometimes an unfortunate starting point may lead to some excited state.*®

851t is straightforward to demonstrate the correctness of the first few terms by expanding the wave operator in the
Taylor series.

86 Therefore, the number of equations is equal to the number of the amplitudes 7 to be determined.

87 This refers to calculations with 7' = 75 for ca. 10 occupied orbitals (for instance, 2 water molecules) and 150
virtual orbitals. These are not calculations for large systems.

88 The first complete analysis of all CC solutions was performed by K. Jankowski and K. Kowalski, Phvs. Rev.
Letters, 81, 1195 (1998); J. Chem. Phys., 110, 37, 93 (1999); ibid. 111, 2940, 2952 (1999). Recapitulation can
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We usually use as a starting point that which is obtained from the linear version (reduced
to obtain a linearity) of the CC method. We will write down these equations as ;" = ...
various powers of all ¢+ amplitudes. First, we neglect the nonlinear terms, which represents the
initial approximation. The amplitudes are substituted into the right side and we iterate until
self-consistency. When all the amplitudes are found, then we obtain the energy E by projecting

Hii

Eq. (10.54) against & function instead of |/;'):
E = (®ole~T Hel dy). (10.55)

The Non-variational Character of the Method

T -7t

The operator (e~ 7)T, conjugate to e~ 7, is e~ ' ; i.c., the energy

E = (e T ®g|HeT dy) (10.56)

does not represent the mean value of the Hamiltonian. Hence, the CC method is not varia-
tional. If we multiplied Eq. (10.51) from the left by eﬂ, we would obtain the variational
character of E': , i i X
o (Dole” Hel @) B (eT dg|H |eT D)
(@ole eTdg) (e dgle” @)

However, it would not be possible to apply the commutator expansion and instead of the four

. (10.57)

terms in Eq. (10.53) we would have an infinite number. Thus, the non-variational CC method
benefits from the very economical condition of the intermediate normalization. For this reason,
we prefer the non-variational approach.

10.15.4 Example: CC with Double Excitations

How does the CC machinery work? Let us show it for a relatively simple case, T = f’g. Equation
(10.54), written without the commutator expansion, takes the form
e~ T2 fel2dg) = 0. (10.58)

ab

Taking advantage of the commutator expansion, we have
mn —'f"z $ f"z mn : - 1 2 3 ' 1 2
(Lp le 2He 2 ®q) = (O | l—T2+§T2+... H 1—|—T2—|—§T2 +... ) Pg)
A A A 1 A A
= (o |1H®o) + (G |HT2®0) + - (| H T3 @)

— (" T, H ®p) — (™| T H T ®o) + A = 0.

be found in K. Jankowski, K. Kowalski, I. Grabowski, and H.J. Monkhorst, Intern. J. Quantum Chem., 95, 483
(1999).
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However,

ab

] ~ ~ 1 ~ ~ A ~
A= — (| RHT] ®o) + 5 (ZZ';;“ITQQHG)O) + (i 172 HT2®o) + <:;',:’1 y HT; @) = 0.

The last equality follows from the fact that each term is equal to zero. The first vanishes since

~ mn
both determinants differ by four excitations. Indeed, ((TJ ) | denotes a double deexcitation™

a
of the doubly excited function (i.e., something proportional to (®g|). For similar reasons (too
strong deexcitations give zero). the remaining terms in A also vanish. As a result. we need to
solve the equation

ab ab ab

” 1 Ao~
(" H ®g) + (™| H T Do) + = 5 {a (’""|H T3 Do) — (| To H D) — (WIT2H Tydg) = 0.

After several days™ of algebraic manipulations, we get the equations for the ¢ amplitudes
(for each ¢/} amplitude, there is one equation):

(8,,, + &, — g — Eb) thy = (mnlab) — Z(mnlpq)rf’:g — E(cdlab)tﬁ'f
p>q c>d

+ Z [((.'11.|bp)r:;y} — (.{.'mlbp)t:;f — {cn |(.'p)t;::_,p + (cm|ap) tb; ]

(10.59)
+ D fedlpg) [ — 2 (e + )

c>d,p>q
. 2( mnt’.?(;f +tf pq nm) +4 (r"”p 4 + 1, ”q mp)] . (10.60)

It can be scen that the last expression includes the term independent of £, the lincar terms, and
the quadratic terms.
How can we find the s that satisfy Eq. (10.60)? We do it with the help of the iterative

method. First, we substitute zeros for all £s on the right side of the equation. Thus, from the
mn : 9[ =~ {(mnlab)

15 ab (hﬂ FEn—Ea— "—"b)
of each amplitude, so we are ]Tldkll“l!: progress. The approximation to ¢ obtained in this way

left side, the first approximation to ] We have now an estimate

1s substituted into the right side to evaluate the left side, and so forth. Finally, we achieve a
self-consistency of the iterative process and obtain the CC wave function for the ground state
of our system. With the amplitudes, we calculate the energy of the system with Eq. (10.55).
This is how the CCD (the CC with double excitations in the cluster operator) works from the
practical viewpoint. It is more efficient when the initial amplitudes are taken from a short CI

89 This is the opposite of excitation.

90 Students — more courage!

91 As we see, we would have trouble if (g, + &, — g, — £}) is close to 0 (quasidegeneracy of the vacuum state with
some other state), because then rgg‘ — 0.
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C . i F: - - R
Y2 with subsequent linearization (as above) of terms containing the initial (known)

expansion,
amplitudes.

The computational cost of the CCD and CCSD (singles and doubles) methods scales as N©,
where N is a number of molecular orbitals (occupied and virtual®), whereas the analogous
cost of the CCSDT (singles, doubles, triples) method requires N® scaling. This means that,
if we increase the orbital basis twice, the increase in the computational cost of the CCSDT
method will be four times larger than that of the CCSD scheme. This is a lot, and because of
this widespread popularity, it has been gained for the CCSD(T) method, which only partly uses
the triple excitations.

10.15.5 Size Consistency of the CC Method

The size consistency of the CC method can be proved on the basis of Eqs. (10.52) and (10.54).
Let us assume that the system dissociates into two”* non-interacting subsystems A and B (i.e., at
infinite distance). Then the orbitals can be also divided into two separable (mutually orthogonal)
subsets. We will show” that the cluster amplitudes, having mixed indices (from the first and
second groups of orbitals), are equal to 0.

Let us note first that, for infinite distance, the Hamiltonian H=H A+ H g. In such a situation,
the wave operator can be expressed as

T = Ta + Tp + Tup, (10.61)

where fA, TB, f’A g include the operators corresponding to spinorbitals from the subsystems
A, B and from the system A B, respectively. Of course, in this situation, we have the following
commutation condition:

[Ha, Tg] = [Hp, Ta] = 0. (10.62)
Then, owing to the commutator expansion in Eq. (10.53), we obtain:
e’_T(ﬁA -+ gg)eT = Ta QAETA +e 1B égeTB + O(fAB), (10.63)

where O(f*A g) denotes the linear and higher terms in f‘A g- Substituting this into Eq. (10.54)
with bra (mixed| vector representing mixed excitation, we observe that the first two terms on

92 The configuration interaction method with inclusion of single and double excitations only:

CCD: 1.A. Pople, R. Krishnan, H.B. Schlegel, and 1.S. Binkley, Intern. J. Quantum Chem., SI14, 545 (1978);
R.I. Bartlett and G.D. Purvis II1, Intern. J. Quantum Chem. S14, 561 (1978).
CCSD: G.D. Purvis IIL, J. Chem. Phys., 76, 1910 (1982).

93 These estimations are valid for the same relative increase of the number of occupied and virtual orbitals, as it is,
e.g.. for going from a molecule to its dimer. In the case of calculations for the same molecule. but two atomic
basis sets (that differ in size) the cost increases only as N4.

94 This can be generalized to many non-interacting subsystems.

93 B. Jeziorski, J. Paldus. and P. Jankowski. Intern. J. Quantum Chem.. 56. 129 (1995).
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the right side of the last equation give zero. It means that we get the equation
(mixcle('f“AB)dJU) —0, (10.64)

which, due to the linear term in 0('1?]4 B), is fulfilled by ff}q g = 0. Conclusion: for the infinite
distance between the subsystems, we do not have mixed amplitudes and the energy of the
AB system is bound to be the sum of the energies of subsystem A and subsystem B (size
consistency).

10.16 Equation-of-Motion Coupled Cluster (EOM-CC) Method

The CC method is used to calculate the ground-state energy and wave function. What about the
excited states? This is a task for the equation-of-motion coupled cluster (EOM-CC) method, the
primary goal being not the excited states themselves, but the excitation energies with respect to
the ground state.

10.16.1 Similarity Transformation

Letusnote that for the Schrodinger equation H ¥ = Eyr, we canperform an interesting sequence

of transformations based on the wave operator e” :

e_ffhjf = Ee_fijf
e T I;‘eTe_Tijf = Ee_szf-

We obtain the eigenvalue equation again, but for the similarity transformed Hamiltonian®®

HY = EY,
where i = ¢ TH ef, v :E’_fijf, and the energy E does not change at all after this transfor-

mation. This result will be very useful in a moment.

10.16.2 Derivation of the EOM-CC Equations

As the reference function in the EOM-CC method, we take the CC wave function for the ground
state:
Yo = exp (T) Py, (10.65)

where @ is usually a Hartree-Fock determinant. Now, we define the operator Ur. which (“EOM-
CC Ansatz™) performs a miracle: from the wave function of the ground state v, it creates the

96 In contrast to the Hamiltonian H, the similarly transformed Hamiltonian does not represent a Hermitian operator.

Moreover, it contains not only the one- and two-electron terms, as it does in H , but also all other many-electron
operators up to the total number of electrons in the system.
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wave function . for the kth excited state of the system:
Vi = Urvo.

The operators Uy change the coefficients in front of the configurations (see p. 616). The
operators Uy are [unlike the wave operator exp (7)) linear with respect to the excitations; i.e.,
the excitation amplitudes occur there in first powers. For the case of the single and double
excitations (EOM-CCSD), we have 7" in the form of the sum of single and double excitations:

T=T1+1
and
Up=Uro+ Uy + Ura,
where the task for the {j'k,g operator is to change the coefficient in front of the function ®q
to that appropriate to the |k) function, the role of the operators Uy 1, Uy 2 is an appropriate
modification of the coefficients in front of the singly and doubly excited configurations. These

tasks are done by the excitation operators with  amplitudes (they have to be distinguished from
the amplitudes of the CC method):

Uro = to(k)
Ui =Y thwpla

a.p

"‘ 2

Uiz = Z D (k)g' p tab,
a,b,p,g

where the amplitudes 7 (k) are numbers that are the targets of the EOM-CC method. The ampli-
tudes give the wave function v/ and the energy Ey.
We write down the Schridinger equation for the excited state:

Hyn = Exn.
Now we substitute the EOM-CC Ansatz:
AUiyo = ExUsiro.
and from the definition of the CC wave operator, we get”’

1;'(3’1. exp ('f)d)o = Ep (}k exp (f‘)dJo.

9 By neglecting higher than single and double excitations. the equation represents an approximation.
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Due to the missing deexcitation part (i.e., that which lowers the excitation rank, such as from
doubles to singles) the operators Uy and T commute®®; hence, the operators Uy and exp (T)
also commute:

ﬁk exp (f‘) = exp ('f)[j’k.
Substituting this, we have:
H exp (f“){;’deU = Ejexp ('f’){}kfb(]
and multiplying from the left with exp (— f”). we get:
[exp (—f)!:‘ exp (f)]f/kQO = E; 0k ON)
or, introducing the similarity transformed Hamiltonian,
7% = e_THeT,
we obtain - X
HU @y = ErU .
From the last equation, we will subtract the CC equation for the ground state:
[exp (—=T) H exp (T)1®g = Eg®y.
Multiplying it from the left with Uy (i.c.. Uy H®o = EoU®o). we get
HO o — Uy H® = E Uk ®o — EoUs®o.
Finally, we obtain an important result:
[, U1®o = (Ex — Eo) Ux®o.

The operator Uy, contains the sought amplitudes 7 (k).

We find them in a similar manner as in the CC method. For that purpose, we make a scalar
product of the left and right sides of that equation with each excitation |} ) used in Ur. We get
the set of the EOM-CC equations whose number is equal to the number of sought amplitudes
plus one more equation due to the normalization condition of ¥;. The unknown parameters are

amplitudes and the excitation energies E; — Ep:

mn... OB, mn... |~
174, 01| @0) = (Ex — Eo) |0] o).
ab. .. ab. ..

9B 1t l}k contains true excitations. then it does not matter whether excitations are performed by [:’kf" or f"(:"; (com-

mutation), because both l}; and 7' mean going up in the energy scale. If, however, (')";\ contains deexcitations, then
1l may happen that there is an attempt in T0 i (s} dccxutc the ground-state wave function--that mcl.kt:b 0, whereas
U,; T may be still OK because the excitations in T may be more important than the deexcitations in Uk
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Once we solve these equations, the problem is over.

It is important that the excitations |;") used in U include not only the regular singles and
doubles, and the function with no excitation”’ (i.e., the function @), but also the states with
different numbers of electrons (i.e., with the ionized states or the states with extra electrons). It
turned out that the last possibility offers an intriguing way of determining a particular electronic
state starting from several distinct points of view. Indeed, one may carry out the EOMCC
computations for a given state (with NV electrons) starting first from function ®¢(1, 2, ... N),
then repeating the calculations with different functions ®¢(1,2,... N — M), where M =
+1, 42. ... and compare the results. As shown by Kucharski and Musiat'"’ such a possibility
1s especially fruitful if (1, 2, ... N) were a very bad approximation to the ground-state wave
function e.g., in case of dissociation of a chemical bond. This approach may offer an elegant

avenue to circumvent the serious problem of bond dissociation.

10.17 Many-body Perturbation Theory (MBPT)

The majority of routine calculations in quantum chemistry are done with variational methods
(mainly the Hartree-Fock scheme). If we consider post-Hartree-Fock calculations, then non-
variational [CCSD, CCSD(T)] and perturbational approaches (including MBPT) take the lead.
The perturbational methods are based on the simple idea that the system in slightly modified
conditions is similar to that before the perturbation is applied (cf. p. 240).

In the formalism of perturbation theory, knowing the unperturbed system and the perturbation
allows us to provide successive corrections to obtain the solution of the perturbed system. Thus,
for instance, the energy of the perturbed system is the energy of the unperturbed system plus the
first-order correction, plus the second-order correction, plus.. ., etc. If the perturbation is small,
then we hope'"! that the series is convergent; even then, however, there is no guarantee that the
series converges fast.

10.17.1 Unperturbed Hamiltonian

In the perturbational approach (cf. 232) to the electron correlation, the Hartree-Fock func-
tion, Py, is treated as the zero-order approximation to the true ground-state wave function;
ie., &g = ([)UJ. Thus, the Hartree-Fock wave function stands at the starting point, while
the goal is the exact ground-state electronic wave function.

99 More precisely, to get only the excitation energy we do not need the coefficient next to .

100 g, Kucharski and M. Musial, Proc. Conference HITY, Krakow, Poland, 2011.

101 Not much is known concerning the convergence of series occurring in quantum chemistry. Commonly, only a
few perturbational corrections are computed.
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In the majority of cases, this is a reasonable approximation, since the Hartree-Fock method usu-
ally provides as much as 98 to 99% of the total energy.'"” A Slater determinant ®; is constructed
from the spinorbitals obeying the Fock equation. How do we construct the operator for which the
Slater determinant is an eigenfunction? We will find out in a moment that this operator is the sum
of the Fock operators (cf. Appendix U available at booksite.elsevier.com/978-0-444-59436-5):

H® =) Fli)=) «i'i. (10.66)

Indeed,

I:](U)(I)] - ZEI‘E\T; -P; = ZE; - Py, (10.67)
i i

since the annihilation of one spinorbital in the determinant and the creation of the same spinor-
bital leaves the determinant unchanged. This is so on the condition that the spinorbital ¢; is
present in wéﬁ}_

The eigenvalue of P}Q = Y. €171 is always the sum of the orbital energies corresponding
to all spinorbitals in the Slater determinant ®;.

This means that the sum of several determinants, each built from a different (in the sense of
the orbital energies) set of spinorbitals, is not an eigenfunction of H®.

10.17.2 Perturbation Theory—Slightly Different Presentation

We have to solve the Schrodinger equation for the ground state' Yo = Evg. with H =
HO + HO where H© denotes the unperturbed Hamiltonian given by Eq. (10.66), and H®O is
a perturbation operator. The eigenfunctions and the eigenvalues of HO are given by Eq. (10.67),
but remembering the perturbation theory formulas, we will denote the Slater determinants as
®; =y

For the ground state, we expand the energy E and the wave function ¢ in a power series
we put AHD instead of H" in the Hamiltonian and expand the energy and the wave function

in a power series'"” with respect to A:

104.

102 Sometimes, as we know, the method fails; and then the perturbation theory based on the Hartree-Fock starting
point is a risky business, since the perturbation is very large.

103 We use the notation from ( “hapter 5.

104 This is an old trick of perturbation theory equivalent to saying that the shape of a bridge loaded with a car is the
shape of the bridge without the car, plus the deformation proportional to the mass of the car, plus the deformation
proportional to the square of the mass of the car, etc. This works if the bridge is solid and the car is light (the
perturbation is small).
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)
“b[sz ojection
P
1
¥
o Puy= 4 ®
Fig. 10.12. Pictorial presentation of the intermediate normalization (a) (‘ffuhffém) = 1 and (b) the projection onto the axis ;fféﬂ)

in the Hilbert space using the operator P= Iw{(}ﬂ)}w{éﬂ) |. Here, 1,!;((]"), n = |1, 2 represents a correction of the nth order to the

ground-state wave function. The picture can only be simplistic and schematic: the orthogonality of v,(;[(lm to g is shown correctly,

but the apparent parallelism of 1}:6” and gbéz} is false.

Eo= EY) +AES? +22EQ 4 -5+, (10.68)

Yo =¥ 42y + 2292 +- .. (10.69)

The Schrédinger equation does not force the normalization of the function. It is convenient

to use the intermediate normalization (Fig. 10.12a); 1.e., to require that (1}f0|11f(§0) y=1

This means that the (non-normalized) g must include the normalized function of zeroth
order "g[/éo) and, possibly, something orthogonal to it.

10.17.3 MBPT Machinery—Part 1: Energy Equation

Let us write ﬁl}fo as f;'g{/g = (!:_\!(0) + ﬁ(lJ)w(}, or, in another way, as FI(IWJ(} = ([;' — !;’(0))1/;(}-
Multiplying this equation by wéO} and integrating, we get (taking advantage of the intermediate
normalization)

(W 1H V%o = (W5 |(H —HO)o) = Eo(95 1¥0) — (¥ 1HO%0) = Eo—Eg” = AEo.
(10.70)
Thus,

AEy = (97 |H Vo). (10.71)

105 5 we assume that the respective functions are analytic in the vicinity of 1 = 0.
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Reduced Resolvent or the “Almost” Inverse of (E [{)0} 10 )

Let us define several useful quantities—we need to get familiar with them now—which will
introduce a certain clegance into our final equations.
Let the first be a projection operator on the ground-state zeroth order function:

ﬁ _| (U))( (U}l (10’}'2)

This means that Py is, within accuracy to a constant, equal to either z/féo) or zero for an arbitrary
function . Indeed, if x is expressed as a linear combination of the eigenfunctions VI,EUJ (these
functions form an orthonormal complete set as eigenfunctions of the Hermitian operator)

= chw‘o) (10.73)

then (Fig. 10.12b)

- 5 0 0 ] 4]
Px =Y aPyl® = aulyg W 1) = cudountry) =covy - (10.74)

JI L n

Let us now introduce another projection operator:

0=1-P= Zw}‘”( ©) (10.75)

n=1

on the space orthogonal to 1/; © . Obviously, P2 = P and Q2 = Q The latter holds since
0% =(1 - P)? —1—2P+P2—1—P 0.
Now we define a reduced resolvent

(10.76)

The definition says that the reduced resolvent represents an operator that from an arbitrary
vector ¢ of the Hilbert space, takes the following actions:
» Cuts out its components along all the unit (i.e., normalized) basis vectors 1/;,5‘” except 1,(;"(30)
*  Weighs the projections by the factor W, so they become less and less important for
higher and higher energy states
* Adds all the weighed vectors together.
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We easily obtain'"°

Ro (Eg}) = ﬁ@) = (Eé”’ 4 ﬁ(o)) Ri=0. (10.77)

For functions ¢ orthogonal to 1};(()0] (i.e., satisfying Q¢ = ¢), the action of the operator

ﬁ’o 1s identical to that of the operator (E((JU) — HOy-L, I%g does not represent the inverse of

(E(()O) — HO). however, because for ¢ = wéo). we get é(](EéO) — HO)¢ = 0. and not the
unchanged ¢.
10.17.4 MBPT Machinery—Part 2: Wave Function Equation

Our goal now will be to present the Schrédinger equation in a different form. Let us first write

it down as follows:
(Eo — HMYyg = HOyy. (10.78)

We aim at having (ES” — H©)yr on the left side. Let us add (ES” — Eo)y to both sides of
that equation to obtain

(E(()U) = Q‘DJ) Yo = (E((]U} — Ep+ 1?(”) Yo- (10.79)
Let us now operate on both sides of this equation with the reduced resolvent ﬁg:
Ro (Eg‘” - f—iﬂUJ) Yo = Ro (Eg’) — Eo+ ﬁ“)) Yo. (10.80)

106 1 et us make sure of this:

(L - ) w1 (O - AO) 19y

]2

o (EQ - O =

-

-1
(£ - E) (£ - ) i) w1y

ot

n=1
20 ~
=Y 1w P19) = 0.

n=1

Let us now operate on the same function with the operator ( El(lo} — HO) ﬁg (i.e., the operators are in reverse
order):

0o
(0~ A®) Rop = (O ~ AO) Y (EQ — EO) ™ 1) w010

n=1

-1 &
(7 - E)  (£§” - ) 1p My w{¥10)

1Y) (i P19) = O¢.

o0
3
n=I1

o0
2
n=1
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On the left side, we have Qv [as follows from Eq. (10.77)]. but Oy = (1 — P)yg =
Yo — |¢(§0’)(¢60J|¢0) = Yo — ¢ré0’, due to the intermediate normalization. As a result, the
equation takes the form

vo— v = Ro (E” — Eo+ V) yo. (10.81)
Thus, we obtain
vo =9 + Ro (E — Eo+ AD) vo. (10.82)

At the same time, based on the expression for A E in perturbation theory (Eq. (10.71)), we
have

Eo=E® + (wé‘”u%“%). (10.83)

These are the equations of the many body perturbation theory, in which the exact wave
function and energy are expressed in terms of the unperturbed functions and energies plus
certain corrections. The problem is that, as can be seen, these corrections involve the unknown
function and unknown energy.

Let us not despair in this situation. but try to apply an iterative technique. First. substitute for
o on the right side of Eq. (10.82) that which most resembles rg; i.€., 60). We obtain

Yo =95 + Ro (E((JG} —Ep + ;}(U) v (10-84)

and then the new approximation to g should again be plugged into the right side and this
procedure is continued until convergence. It can be seen that the successive terms form a scrics
(let us hope that it is convergent).

[e9}

yo=Y [iéo (B - Eo+ ﬁ(”)] v, (10.85)

n=0

Now only known quantities occur on the right side except for Eyp, the exact energy. Let us
pretend that its value is known and insert into the energy expression [Eq. (10.83)] the function

Yo:
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M

Eo = EQ+(v§" 1A Vo) = Eé“’+<wé°’|ﬁ‘” > [Ro(EP — Eo+ HO)] mé‘”)-
n=0

(10.86)

Let us go back to our problem: we want to have Eg on the left side of the last equation, while
- for the time being - Ep occurs on the right sides of both equations. To exit the situation, we
will treat Eg occurring on the right side as a parameter manipulated in such a way as to obtain
equality in both of these equations. We may do it in two ways. One leads to the Brillouin-Wigner
perturbation theory, the other to the Rayleigh-Schridinger perturbation theory.

10.17.5 Brillouin-Wigner Perturbation Theory

Let us decide first at what n = M we terminate the series; i.c., to what order of perturbation
theory the calculations will be carried out. Say that M = 3. Let us now take any reasonable
valuc'"’ as a parameter of Ey. We insert this value into the right side of Eq. (10.86) for Ey
and calculate the left side (i.e., Ep). Then let us again insert the new Ey into the right side and
continue in this way until self-consistency [i.e., until Eq. (10.86) is satisfied]. After Ej is known,
we go to Eq. (10.85) and compute g (through a certain order—e.g., M).

Brillouin-Wigner perturbation theory has, as seen, the somewhat unpleasant feature that
successive corrections to the wave function depend on the M assumed at the beginning.

We may suspect'"® — and this is true — that the Brillouin-Wigner perturbation theory is not
size consistent.

10.17.6 Rayleigh-Schrodinger Perturbation Theory

As an alternative to Brillouin-Wigner perturbation theory, we may consider Rayleigh-Schrodinger
perturbation theory, which is size consistent. In this method, the total energy is computed in a
stepwise manner:

Eg=Y EJ (10.87)
k=0

in such a way that first we calculate the first-order correction EéU [i.c., of the order of AW I,

then the second-order correction, E({)z) [i.e., of the order of (f;' (1)2], etc. If we insert into the

107 A “unreasonable’” value will lead to numerical instabilities. Then we will learn that it was unreasonable to take
il.
108 This is due to the iterative procedure.
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right side of Egs. (10.85) and (10.86) the expansion Eg = ZE‘;O E((]k) and then, by applying the

usual perturbation theory argument, we equalize the terms of the same order and get
forn =0:
1 0 65 0
EP = (yf{g HOy ’). (10.88)

forn=1:
E® = <¢((] NAD Ry (ES” — Eo+ H“’) ¥ )) = (Ufé NHO Ry AWy ))= (10.89)

since éo”gfléol =ik
forn =2:
E® = the third-order terms from the expression:

(vf[()mlg(n [fi‘o (Et(}u) _ Eé(l) _ Eél) _ E[()Q) Y é(l))]2¢3(1)>
_ (Wé%ﬁ(l)f%o (_E(()lJ B E(()ZJ N g{l)) Ro (_E((}IJ - E((}Z) oy g(l)) IU(EO))
and the only terms of the third order are:
E® — (1.050)|f;’(1”§0é(”§oﬁ“)%0’) _ E{(}l) (w(()o}lﬁ(l)R(z)ﬁu)WéUJ)! (10.90)

etc.

Unfortunately, we cannot give a general expression for the kth correction to the energy
although we can give an algorithm for the construction of such an expression.'” Rayleigh-
Schrédinger perturbation theory (unlike the Brillouin-Wigner approach) has the nice feature
that the corrections of the particular orders are independent of the maximum order chosen.

10.18 Moller-Plesset Version of Rayleigh-Schrédinger Perturbation Theory

Let us consider the case of a closed shell.''” In the Mgller-Plesset perturbation theory. we
assume as H© the sum of the Hartree-Fock operators [from the RHF method; see Eq. (10.66)],
and ijéuj = YRHF, 1.C..

N oo
HO =Y "Fi) =) «ili,
i i

HOYgyr = E(()O)T!fRHF, (10.91)

109 . Paldus and J. Cizek, Ady. Quantum Chem., 9, 105 (1975).

10 Mgller Plesset perturbation theory also has its multireference formulation when the function @ is a linear
combination of determinants [K. Woliriski. P. Pulay. J. Chem. Phys., 90, 3647 (1989)].
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ES =) & (10.92)

(the last summation is over spinorbitals occupied in the RHF function); hence. the perturbation,
known in the literature as a fluctuation potential, is equal to

AV = g - O, (10.93)

For such a perturbation, we may carry out calculations through a given order n: we have a
sequence of approximations MPn. A very popular method relies on the inclusion of the pertur-
bational corrections to the energy through the second order (known as the MP2 method) and
through the fourth order (MP4).

10.18.1 Expression for MP2 Energy

What is the expression for the total energy in the MP2 method?
Let us note first that, when calculating the mean value of the Hamiltonian in the standard
Hartree-Fock method, we automatically obtain the sum of the zeroth-order energies ) . ¢; and

the first-order correction to the energy (&RH Fl Ao VRH F). Indeed, Epgr = <¢RHF |I;’¢RHF)

= (VRrFIAO + AO)Yrar) = (5, €) + (Vrarl A OYrir). So what is left to be done
(in the MP2 approach) is the addition of the second-order correction to the energy (p. 245, the
prime in the summation symbol indicates that the term making the denominator equal to zero
is omitted), where, as the complete set of functions, we assume the Slater determinants I,b‘éoj

corresponding to the energy E 150) (they are generated by various spinorbital occupancies):

" 2 i 2
(1A O Yrar) (18 v 08
Epp2 = ERur + E = Eppr + 94)
()] (0) (U] (0)
K Ey” — Ey . Eo —E

the last equality holds because ¥ gy F 1s an eigenfunction of I;’{OJ, and 1/;’,50) and YryF are
orthogonal. It can be seen that among possible functions 1,&@ , we may ignore all but doubly
excited ones. Why? This is for two reasons:

¢ The single excitations give (1&;0) | H YRH F) = 0 due to the Brillouin theorem.

e The triple and higher excitations differ by more than two excitations from the functions
YrpF and, due to the fourth Slater-Condon rule (see Appendix M available at book-
site.elsevier.com/978-0-444-59436-5 p. el119), give a contribution equal to 0.

In such a case, we take as the functions 1};;50) only doubly excited Slater determinants ":;f’,
which means that we replace the occupied spinorbitals:a — p, b — g, and, to avoid repetitions,
a < b, p < q. These functions are eigenfunctions of H© with the cigenvalues being the sum

of the respective orbital energies [see Eq. (10.67)]. Thus. using the third Slater-Condon rule,
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we obtain the energy correct through the second order:

blpq) — (ablgp)|*
Eyp2 = ERur + Z e l_':Q) 121 : (10.95)

a<b,p<qg

hence, the MP2 scheme viewed as an approximation to the correlation energy gives''!

l(ab| pq) — (ablgp)|?
Ecoret ™ Enpz = ERnr = )~ i fa — ‘”;' , (10.96)
“(r h T &p T cq

a<b,p<qg

Well, how effective is the MP method in computing the electron correlation? Fig. 10.13
shows a comparison of the RHF, MP2, MP3, and CISD (in this case, equivalent to CI) methods
applied to the hydrogen molecule for several values of the internuclear distance R. The results

Energy (a.u.)
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09+ "‘/-f
-~ N[Pz
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Fig. 10.13. The electronic energy of the hydrogen molecule as a function of the internuclear distance R. The energy is computed
by using the RHF (gray solid line), MP2 (lighter dotted line), MP3 (darker dotted line) and CI (black solid line). The energy of the
two isolated hydrogen atoms is shown as a horizontal dashed line. The computations have been carried out by using the Gaussian
program with a standard basis of atomic orbitals 6-311G{d,p). Energies and distances are given in a.u.

11 The MP2 method usuall y gives satisfactory results (e.g., the frequencies of the normal modes). There are indi-
cations, however, that the deformations of the molecule connected with some vibrations strongly affecting the
electron correlation (vibronic coupling) create too severe a test for the method--the error may amount to 30 to
40% for frequencies of the order of hundreds of ecm™ L. as has been shown by D. Michalska. W. Zierkiewicz,
D.C. Bienko, W. Wojciechowski. and T. Zeegers-Huyskens, J. Phys. Chem., A105, 8734 (2001).
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of CI are better than those of the Restricted Hartree-Fock method (RHF)—a feature guaranteed
by the variational principle. As one can see, the RHF method indicates quite accurately the
position of the minimum, although it makes there a clearly visible error in energy. In contrast
to this, for large R, the method creates a kind of disaster. The duty of the perturbational MP2
and MP3 methods is to improve the RHF mess by adding some corrections. This difficult job
1s done very well for distances R close to the minimum. The duty is. however. too demanding
for large internuclear distances, although even there the improvement is important, especially
for the MP3 method.

10.18.2 Is the MP2 Method Size Consistent?

Let us see. From Eq. (10.96), we have Eppy = Egr + Zad; _— H“falf_il_{;ff‘;p}'z On the
right side, the E g F energy is size consistent, as it was shown at the beginning of this chapter.
It is therefore sufficient to prove that the second term is also size consistent. For separated
subsystems, the excitations @ — p and b — g must correspond to the spinorbitals a and p
belonging to the same molecule (and represent the Hartree-Fock orbitals for the subsystems).
The same can be said for the spinorbitals » and g. We have, therefore (lim denotes the limit
corresponding to all distances among the subsystems equal to infinity. and Egg r(A) stands for

the Hartree-Fock energy of molecule A),

l(ablpq) — (ablqp)|*
Fa +8b _Ep _'c:(]

lim Eppy = ZERHF(A)-I—IIITI Z

a<h,p<qg

_ Z Engr(A) + Z Z [{ab|pq) — (ablgp)

€a+Eph—Ep— &y

|2

A ab,pgeA
b — (ab .
+ Z Z e |{ab|pq) — (ablgp)|
A<Ba,peA.b,geB €a + &b — SP - 8‘!
= Z Emp2(A) +0,
A

because in the last term, the integral (ab|pqg) vanishes as R—,lm' while the integral (ab|gp)

vanishes even faster (exponentially, because of the overlap of spinorbitals belonging to different
molecules).
The result obtained means that

the MP2 method 1s size consistent.
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Example

The proofs of the size consistency should be reflected by numerical results in practical applica-
tions. Let us perform some routine calculations for two helium atoms''? by using the HF, MP2,
CISD. and CCSD methods. We perform the calculations for a single helium atom. and then for
two scparated helium atoms, but with the internuclear distance so large that there are serious
grounds for rejecting any suspicion about their significant mutual interaction. Then, we will see
whether the energy for the two atoms is twice the energy of a single atom (as it should be for
size consistency). Well, how to decide about such a safe distance? A helium atom is an object
of the diameter of about 2 A (in a simple and naive view). The distance of about 30 A should
be sufficiently large to have the interaction energy negligible. The numerical results are collected
in the following table:

2 He He; (R=30 A)
HF —5.7103209 —5.7103209
MP2  —57327211 -5.7327211
CISD —5.7403243 —5.7401954
CCSD —5.7403243  —5.7403243

The numbers given confirm the theoretical considerations. The numbers in the second column
(twice the energy of the isolated helium atom) and the third column (the energy of the two distant
atoms) are identical to eight significant figures (shown in bold) for the HF, MP2, and CCSD
methods. In contrast to that, according to what we know about the C1 method, the CISD method
is size inconsistent (the difference is on the fifth significant figure).

10.18.3 Convergence of the Moller-Plesset Perturbation Series

Does the Mgller-Plesset perturbational series converge? Very often this question can be con-
sidered surrealist, since most frequently we carry out calculations through the second, third,
and-at most—fourth order of perturbation theory. Such calculations usually give a satisfactory
description of the physical quantities considered and we do not think about going to high orders
requiring major computational effort. There were. however. scientists interested to see how fast
the convergence is if very high orders are included (MPn) for n < 45. And there was a surprise
(see Fig. 10.14).

12 Ope may use, for example, the public domain www.webmo offering several quantum chemistry programs; we
use here the Gaussian program with the atomic orbital basis set 6 — 31G(d).
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Fig. 10.14. Convergence of the Moller-Plesset perturbation theory (deviation from the exact value. given in a.u.) for the HF
molecule as a function of the basis set used (cc-pVDZ and augmented ce-pVDZ) and assumed bond length, Ry denotes the HF
equilibrium distance (following T. Helgaker, P. Jgrgensen, and I. Olsen, Molecular Electronic-Structure Theory Wiley, Chichester,
2000, p. 780, Fig. 14.6). Courtesy of the authors.

It is true that the first few orders of the MP perturbation theory give reasonably good results,
but later. the accuracy of the MP calculations gets worse. A lot depends on the atomic orbital
basis set adopted and wealthy people (using the augmented basis sets, which is much more
rare) encounter some difficulties, whereas poor ones (modest basis sets) do not. Moreover, for
long bond lengths (2.5 of the equilibrium distance R,), the MPn performance is worse. For high
orders, the procedure is heading for a catastrophe!'® of the kind already described on p. 249.

The reason for this is the highly excited and diffuse states used as the expansion functions.''

10.18.4 Special Status of Double Excitations

In Mgller-Plesset perturbation theory, AE = Eg — Eé,u) = Eg— Ergr — Eg')) + Eryr =
Ecoret + (Erir — E{ ). On the other hand''S AE = Eq — E{” = (" |Hyo) — EJ.
The function 1y can be expanded in Slater determinants of various excitation rank (we use

intermediate normalization): Yy = 1,!/50) +excitations. Then, by equalizing the two expressions

for A E obtained above, we have

113 This is so except for the smaller basis set and the equilibrium bond length, but the problem has been studied up
ton =21.

114 An analysis of this problem is given in T. Helgaker, P. Jgrgensen, and J. Olsen, Molecular Electronic-Structure
Theory, Wiley, Chichester (2000), p. 769.

115 ) this instance. we take advantage of the intermediate normalization (rjféo)|¢0) =1 and (gbéo)[ij;ém) = 1 and

the fact that yrq is an eigenfunction of H.
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Ecoret + ERHF = (%béo)'g"‘;bO) = (¢é0}|§(1/;(§0) —I—e’xc‘fra.rion's)) = Egryr + (T.ff{g(])”;'
(excitations)); hence

Ecorel = (1};60)|F}(exm'mtfmrs)). (10.97)

The Slater-Condon rules (see Appendix M available at booksite.clsevier.com/978-0-444-
59436-5, p. ¢109) show immediatcly that the only excitations that give nonzero contributions
are the single and double excitations. Moreover, taking advantage of the Brillouin theorem, we
obtain single excitation contributions exactly equal zero. So we get the result that

the exact correlation energy can be obtained using only that part of a formula for the
configuration interaction wave function ¥¢; that contains exclusively double excitations:

Ecorel = (ljréo)lﬁf(doub!e excitations on.ly)).

The problem. however. lies in the fact that these doubly excited determinants are equipped
with coefficients obtained in the full CI method (i.e., with all possible excitations). How is
this? We should draw attention to the fact that, in deriving the formula for A E, intermediate
normalization is used. If someone gave us the normalized FCI wave functions as a Christmas
gift,''© then the coefficients occurring in the formula for A E would not be the double excita-
tion coefficients in the FCI function. We would have to denormalize this function to have the
coefficient for the Hartree-Fock determinant equal to 1. We cannot do this without knowledge
of the coefficients for higher excitations.

It is as if somebody said: the treasure is hidden in our room, but to find it, you have to solve
a very difficult problem in the kingdom of Far Far Away. Imagine a compass that leads you
unerringly to that place in our room where the treasure is hidden. Perhaps a functional exists
whose minimization would provide us directly with the solution, but we do not know it yet.!'’

Summary

. In the Hartree-Fock method, electrons of opposite spins do not correlate their motion''® which is an absurd
0 epr /4

sifuation (in contrast to when electrons of the same spins avoid each other, which is reasonable). In many cases
(like the F> molecule, description of dissociation of chemical bonds. or interaction of atoms and non-polar
molecules). this leads to wrong results. In this chapter., we have learned about the methods that do take into
account a correlation of electronic motions.

16 Dreams...

U7 1t 1ooks like the work by H. Nakatsuji, Phys. Rev. A, 14, 41 (1976), and M. Nooijen, Phys. Rev. Letters, 84, 2108
(2000) go in this direction.

18 Note, however, that they repel each other (mean field) as if they were electron clouds.
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Variational Methods Using Explicitly Correlated Wave Function

Rely on using in the variational method a trial function that contains the explicit distance between the electrons.
This improves the results significantly, but requires evaluation of very complex integrals.

The correlation cusp condition, (%E) = pgiqjy (r = 0) can be derived, where r is the distance of two
=

particles with charges ¢; and g ;. and p is the reduced mass of the particles. This condition helps to determine
the correct form of the wave function . For instance, for the two electrons, the correct wave function has to

satisfy (in a.u.): (81&) e 21-1}/(?' =0).

The family of variational methods with explicitly correlated functions includes the Hylleraas method, the Hyller-
aas CI method, the James-Coolidge and the Kolos-Wolniewicz approaches, as well as a method with exponen-
tially correlated Gaussians. The method of explicitly correlated functions is very successful for two-, three-,
and four-electron systems. For larger systems, due to the excessive number of complicated integrals, variational
calculations are not yet feasible.

Variational Methods with Slater Determinants

The configuration interaction (CI) approach is a Ritz method (see Chapter 5), which uses the expansion in terms
of known Slater determinants. These determinants are constructed from the molecular spinorbitals (usually
occupied and virtual ones) produced by the Hartree-Fock method.

Full Cl expansion usually contains an enormous number of terms and is not feasible. Therefore, the CI expansion
must be truncated somewhere. Usually. we truncate it at a certain maximum rank of excitations with respect
to the Hartree-Fock determinant (i.e., the Slater determinants corresponding to single, double, or up to some
maximal excitations are included).

Truncated (limited) CI expansion is not size consistent; i.e., the energy of the system of non-interacting objects
is not equal to the sum of the energies of the individual objects (calculated separately with the same truncation
pattern).

The multiconfiguration self-consistent field (MC SCF) method is similar to the CI scheme, but we vary not
only the coefficients in front of the Slater deterniinants. but also the Slater determinants themselves (changing
the analytical form of the orbitals in them). We have learned about two versions: the classic one (where we
optimize alternatively coeflicients of Slater determinants and the orbitals) and a unitary one (where we optimize
sinutltaneously the determinantal coefficients and orbitals).

The complete active space self-consistent field (CAS SCF) method is a special case of the MC SCF approach and
relies on the selection of a set of spinorbitals (usnally separated energetically from others) and on construction
from them of all possible Slater determinants within the MC SCF scheme. Usually, low-energy spinorbitals are
inactive during this procedure: i.e.. they all occur in each Slater determinant (and are either frozen or allowed
to vary).

Non-variational Method Based on Slater Determinants

The coupled-cluster (CC) method is an attempt to find such an expansion of the wave function in terms of the
Slater determinants, which would preserve size consistency. In this method, the wave function for the electronic
ground state is obtained as a result of the operation of the wave operator exp (f") on the Hartree-Fock function
(this ensures size consistency). The wave operator exp (T) contains the cluster operator 7, which i is defined as
the sum of the operators for the /-tuple excitations, ] 7 up to a certain maximum [ = lpax. Each 7, ] operator is
the sum of the operators each responsible for a particular I-tuple excitation multiplied by its amplitude t. The
aim of the CC method is to find the ¢ values since they determine the wave function and energy. The method
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generates nonlinear equations with respect to unknown ¢ amplitudes. The CC method usually provides very
good resulis.

The equation-of-motion coupled-cluster (EOM-CC) method is based on the CC wave function obtained for the
ground state and is designed to provide the electronic excitation energies and the corresponding excited-state
wave functions.

The many-body perturbation theory (MBPT) method is a perturbation theory in which the unperturbed system
is usually described by a single Slater determinant. We obtain two basic equations of the MBPT approach for

the ground-state wave function: ¢/ = nlréo) + 1?0 (E[{]ﬂJ —Eg+ H (1)) Yoand Eg = E({]UJ + (glrémlﬁ (1}1;;0),

where ©) 1s usually the Hartree-Fock function, E, ) the sum of the orbital energies, AV =g g0 is the
0 Y 0 24

fluctuation potential, and 1?0 the reduced resolvent (i.e., the “almost™ inverse of the operator 1:'(()”) —H (U)). These
equations are solved in an iterative manner. Depending on the iterative procedure chosen, we obtain either the
Brillouin-Wigner or the Rayleigh-Schrédinger perturbation theory. The latter is applied in the Mgller-Plesset
method.

One of the basic computational methods for the correlation energy is the MP2 method, which gives the
result correct through the second order of the Rayleigh-Schridinger perturbation theory (with respect to

energy).

Main Concepts, New Terms

active orbitals (p. 624)
anticorrelation (p. 608)

Brillouin theorem (p. 617)
Brillonin-Wigner perturbation theory (p. 647)
Brueckner function (p. 581)

CC amplitudes (p. 639)

cluster operator (p. 630)

commutator expansion (p. 626)
complete active space (CAS) (p. 628)
configuration (p. 615)

configuration interaction (p. 615)
configuration mixing (p. 615)
correlation energy (p. 578)

Coulomb hole (p. 595)

coupled cluster (CC) (p. 629)
covalent structure (p. 611)

cusp condition (p. 584)

deexcitations (p. 636)

direct method (p. 622)

EOM-CC method (p. 638)

exchange hole (p. 597)

explicit correlation (p. 584)
exponentially correlated function (p. 594)
Fermi hole (p. 597)

frozen orbitals (p. 624)

full CI method (p. 654)

geminal (p. 589)

harmonic helium atom (p. 589)
Heitler-London function (p. 611)
Hylleraas CI (p. 587)

inactive orbital (p. 624)

intermediate normalization (p. 631)

1onic structure (p. 611)

James-Coolidge function (p. 590)
Kotos-Wolniewicz function (p. 590)

many body perturbation theory (p. 641)
MBPT method (p. 641)

Mpgller-Plesset perturbation theory (p. 648)
multiconfigurational SCF (MC SCF) methods (p. 624)
multireference methods (p. 623)

natural orbitals (p. 621)
Rayleigh-Schridinger perturbation theory (p. 647)
reduced resolvent (p. 644)

resonance theory (p. 610)

similarity transformation (p. 638)

size consistency (p. 582)

unitary MC SCF method (p. 626)

vacuum state (p. 630)

Valence bond (VB) method (p. 610)

wave operator (p. 631)
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From the Research Front

The computational cost in the Hartree-Fock method scales with the size N of the atomic orbital basis set as N* and.

119 a5 N3. However, after making the Hartree-Fock computations, we

while using devices similar to direct CI, even
perform more and more frequently calculations of the electronic correlation. The main approaches used to this end
are the MP2 method, the CC method with single and double excitations in 1 and partial inclusion of triple ones [the
so-called CCSD(T) approach]. The CC method has been generalized for important cases involving chemical bond
breaking.'*" The state of the art in CC theory currently includes the full CCSDTQP model, which incorporates into
the cluster expansion all the operators through pentuple excitations.'?! The formulas in these formalisms become
monstrous to such an extent, that scientists desperately invented an “anti-weapon™: first, automatic (computer-based)
derivation of the formulas is used, followed by automatic coding of the derived formulas into executable programs
(usnally using the Fortran). In such an approach we do not need to see our formulas...

The computational cost of the CCSD scheme scales as N 6. The computational strategy often adopted relies on
obtaining the optimum geometry of the system with a less sophisticated method (e.g., Hartree-Fock) and, subse-
quently, calculating the wave function for that geometry with a more sophisticated approach (e.g., the MP2 that
scales as N, MP4 or CCSD(T) scaling as N7). In the next chapter, we will learn about the density functional theory
(DFT), which represents an alternative to the above-mentioned methods.

Recoupling Quantum Chemistry with Nuclear Forces

The CC method has been designed lirst in the field of nuclear physics. This fact, however. had no consequences until
recent years, since the numerical procedure has been judged by the community as untractable. Only because the
quantum chemist Jiff Cizek accidentally looked up a nuclear physics journal, the idea diffused to quantum chemistry
community and after some spectacular developments turned out to become the most successful in studying atoms
and molecules. It turned out, however, that the idea went back to nuclear physics from quantum chemistry. The
quantum chemistry CC technique has been applied to compute the energy levels for nucleons in several nuclei with
much higher precision, than it was possible before.'?”

Nakatsuji Strategy

Hiroshi Nakatsuji looked at the Schrédinger equation from an unexpected side. 173 He wrote two equations:

(sv1c — Eyy) =0, (10.98)

(wnﬁ - E\zw} -0 (10.99)

and asked: what is their relation to the Schrédinger equation (I;{ — Eypr =0.

119 This reduction is caused mainly by a preselection of the two-electron integrals. The preselection allows us to
estimate the value of the integral without its computation and to reject the large number of integrals of values
close to zero.

120 p. piecuch, M. Wioch, 123, 224105 (2005).

121 M. Musiat S.A. Kucharski, and R.J. Bartlett, J. Chem. Phys., 116, 4382 (2002).

122 M. Wioch, D.J. Dean, I.R. Gour, M. Hjorth-Jensen, K. Kowalski, T. Papenbrock, and P. Piecuch, Phys. Rey.
Letters, 94. 212501 (2005).

123 H. Nakatsuji, J. Chem. Phys., 113, 2949 (2000).
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Note, that Eq. (10.98) follows from minimizing

Hiroshi Nakatsuiji, professor at Kyoto
University, Japan, then professor at
Quantum Chemistry Research Insti-
tute, Kyoto. When visiting Warsaw, he
presented me his ingenious way of
solving the Schrodinger equation. |
was deeply impressed and said: “You
are a mathematician | presume?”.
Professor Nakatsuiji: “No, | am just an
organic chemist!”

the functional (g’fll;’ y’;) under normalization

constraint'?* ( (¢r]¥) = 1) of the trial func-
tion . This is the essence of the variational
method described in Chapter 5. Satisfaction
of Eq. (10.98) may happen either because
fulfills the Schrédinger equation. or. at ¥ not
satisfying the Schrédinger equation, but opti-
mal within the variational method restricted
to a class of variations'25 § 1. Anyway, if
satisfies Eq. (10.98), itdoes not necessarily rep-
resent a solution to the Schrédinger equation,
it does with no restrictions imposed on 8.

Eq. (10.99) has a different status: it is satisfied only for the solution  of the Schrédinger equation. 126 Unfortu-
nately, it contains the square of the Hamiltonian. This seems to hint that difficult integrals will be calculated in the

future, but for the time being, we are going forward courageously.
Imagine, that the variation of ¥ in Eq. (10.98) was chosen to have a very special form:

8y = (H — E){ - 5C, (10.100)

where C is a variational parameter in . Then, from Eq. (10.98), we have the precious Eq. (10.99):
(u} — EY|(A — 1:'}1,!/) BC* =0,

and in such a case, %’ (!;‘r — E)yr = 0 (solution of the Schrodinger equation). It is seen, therefore, that the right side
of Eq. (10.100) in a sense “forces” correct structure of the wave function, and hopefully this also takes place when
we lake an approximation instead of the exact (and unknown) energy E. Having this in mind, let us construct a varia-
tional function satisfying Eq. (10.100). But how do we get this? Well, let us begin an iterational game with functions

(n =0, 1, 2, ... numbers the iterations, 81 represents an analog of ¥,, .1 — y,, we define E,, = (-g';,.;] I;’-glr,, )) as

Ynt1 = [1 + Cn(f;‘ — En )] Y. (10.101)

We start from an arbitrary function ¥/, and in each iteration, we determine variationally the value of the coefficient
;. We hope the procedure converges; i.e., what we get as the left side is the function inserted into the right side. If
this happens, we achieve the satisfaction of

y=[1+cd@ -]y, (10.102)

where we have removed the lower indices because they do not matter at convergence. For C # (0, this means the
achievement of our aim; i.e., (H — E){ = 0.
As it turned out, this recipe needs some corrections when applied in practical calculations. In order to be able to

calculate the integrals £, = (;&”H;' gff,g) safely, 128 Nakatsuji considered what is known as the scaled Schrédinger

124 A conditional minimum can be found by using the Lagrange multipliers method, as described in Appendix N
available at booksite.elsevier.com/978-0-444-59436-5.

125 1f no restriction is imposed, the function found satisfies the Schrodinger equation.

126 [ndeed, (¢|(ﬁ = E}va) = ((f} = E) WICA — E)w) = |I(A — EYY||2 = 0. where ||[(H — EW|| is the vector
length. The latter equals 0 only if all the components of the vector equal 0. This means that in any point of space,
we have (F} - Eyr=0.

127 This happens because of the arbitrariness of §C.

128 We have to calculate the mean values of higher and higher powers of the Hamiltonian. These integrals are
notorious for diverging.
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equation’ 29,

g(H — E)yy =0, (10.103)

instead of the original one (satisfied by the same /). where the arbitrary function (of the electronic coordinates) g does
nol commute with the Hamiltonian. must be positive everywhere. except points of singularity, but even approaching
a singularity, it has to be lim gV # 0. Thus, the philosophy behind function g is to destroy the “singularity character
in singularities” and, at the same time not to destroy the precious information about these singular points, present in

the potential energy V. Several possibilities have been tested (e.g., g = m org =— V,,_;.IV;’ etc.), where Ve

and Ve are the Coulomb potential energy of the electron-nucleus and electron-electron interactions. 3"

The results witness about great effectiveness of this iterative method. For example.131 in a little more than 20
iterations, the Schrodinger equation was practically solved (with nearly 100% of the correlation energy within finite
basis sets) for molecules HCHO, CH3F, HCN, CO», and C3H4. Analytical calculations'*? for Hy within four to
six iterations gave the electronic energy (at the equilibrium distance) with 15 significant figures (independently of
several tested starting functions ). Similar calculations for the helinm atom gave an accuracy of over 40 digits. 133

No doubt, Nakatsuji’s idea does represent not only a fresh look at the quantum theory, but it also has a significant
practical power. It remains to learn what the complicated final form of the wave function is telling us. This, however,
pertains also to wave functions produced by many other methods.

Ad Futurum

Experimental chemistry is focused. in most cases. on molecules of a larger size than those for which fair calculations
with correlation are possible. However, after thorough analysis of the situation, it turns out that the cost of the
calculations does not necessarily increase very fast with the size of a molecule. 4 Employing localized molecular
orbitals and using the multipole expansion (see Appendix X available at booksite.elsevier.com/978-0-444-59436-5)
of the integrals involving the orbitals separated in space causes, for elongated molecules, the cost of the post-THartree-
Fock calculations to scale linearly with the size of a molecule. 135 Tt can be expected that if the methods described in
this chapter are to survive in practical applications, such a step has to be made.

There is one more problem. which will probably be faced by guantum chemistry when moving to larger molecules
containing heteroatoms. Nearly all the methods. including electron correlation. described so far (with the exception
of the explicitly correlated functions) are based on the silent and pretty “obvious” assumption, that the higher the
excitation we consider, the higher the configuration energy we get. This assumption seems to be satisfied so far,
but the molecules considered were always small, and the method has usually been limited to a small number of
136 The multiple excitations in large molecules
containing easily polarizable fragments can result in electron transfers that cause energetically favorable strong
electrostatic interactions (“mnemonic qﬁecr"l'w) that lower the energy of the configuration. The reduction can be
large enough to make the energy of the formally multiply excited determinant close to that of the Hartree-Fock

exciled electrons. This assumption can be challenged in certain cases.

129 H. Nakatsuji, Phvs. Rey. Lett., 93, 30403 (2004). In this reference Nakatsuji’s standard method is described.
130 The integration difficulty can be circumvented also by considering satisfaction (in points of space) of the

Schridinger equation in the form %}E = const as described in H. Nakatsuji, H. Nakashima, Y. Kurokawa,
and A. Ishikawa, Phys. Rev. Lett., 99, 240402 (2007).

131 ¥, Nakatsuji. Bull. Chem. Soc. Japan. 78. 1705 (2005).

132 jterations result in a (nested) analytical form of the wave function.

133 1. Nakashima. and . Nakatsuji. J. Chem. Phys.. 127, 224104 (2007).

134 H.-1. Werner, J. Chem. Phys.. 104. 6286 (1996).

135 See e.g.. W. Li. P. Piecuch. J.R. Gour. S. Li. J. Chem. Phys.. 131. 114109 (2009).

136 There are exceptions though: see A. Jagielska. and L. Piela. J. Chem. Phvs., 112, 2579 (2000).

1317 Stolarczyk and L. Piela, Chem. Phys. Letters, 85, 451 (1984).
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determinant. Therefore, it should be taken into account on the same footing as Hartree-Fock. This is rather unfeasible
for the methods discussed above.

The explicitly correlated functions have a built-in adjustable and efficient basic mechanism accounting for the
correlation within the interacting electronic pair. The mechanism is based on the obvious thing: the electrons should
avoid each other.'®

Let us imagine the CH4 molecule and look at it from the viewpoint of localized orbitals. With the method of
explicitly correlated geminal functions for bonds, we would succeed in making the electrons avoid each other within
the same bond. And what should happen if the center of gravity of the electron pair of one of the bonds shifts toward
the carbon atom? The centers of gravity of the electron pairs of the remaining three bonds should move away along the
CH bonds. The wave function must be designed in such a way that it accounts for this. In current theories, this effect
is either deeply hidden or entirely neglected. A similar effect may happen in a polymer chain. One of the natural
correlations of electronic motions should be a shift of electron pairs of all bonds in the same phase. As a highly
many-electron effect the latter is neglected in current theories. However. the purely correlational Axilrod-Teller effect
in the case of linear configuration, discussed in Chapter 13 (three-body dispersion interaction in the third order of
perturbation theory), suggests clearly that the correlated motion of many electrons should oceur.

Additional Literature

A. Szabo and N. S. Ostlund, Medern Quantumn Chemistry, McGraw-Hill, New York (1989).
This classical book gives a detailed and crystal clear description of most important methods used in quantum
chemistry.

T. Helgaker, P. Jgrgensen, and I. Olsen, Molecular Electronic Structure Theory, Wiley, Chichester (2000).
Practical information on the various methods accounting for electron correlation presented in a clear and competent
manner.

Questions

1. Hartree-Fock method

describes the electrons with their positions being completely independent

introduces the correlation of motion of electrons with the same spin coordinate

does not introduce any correlation of motion of electrons with the opposite spin coordinates
ignores the Coulomb hole. but takes care of the Fermi hole

e o

2. The ground state of helium atom in the Hartree-Fock method:

a. if one electron is on the nucleus, the probability of finding the second one in a small volume dV is also the
largest on the nucleus
if electron 1 is on one side of the nucleus, electron 2 is easiest to find on the nucleus

¢. if both electrons are at the same distance from the nucleus, it is equally easy to find them in the same point
as in two points opposite to each other with respect to the nucleus

d. if both electrons are at the same distance from the nucleus. they will tend to be on the opposite sides of the
nucleus

3. The CI method truncated at double excitations gives energy E g, for two beryllium atoms at large distance R.
In calculations by using this method:

a. if R — oo, there willbe Egope = 2EpRe

138 1n special conditions, one electron can follow the other, forming a Cooper pair. The Cooper pairs are responsible
for the mechanism of superconductivity. This will be a fascinating field of research for chemist-engineered
materials in the future.
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if R — ©o, one will obtain Eg.p, — 2E g, = const # 0

c. if R — oo, one will get Epeope. = 2Ep.. but under condition that the CI calculation for the individual
beryllium atom was limited to double excitations

d. the result obtained contains an error coming from the size inconsistency

The CC method (with the cluster operator truncated at double excitations) gives energy E p,p, for two beryllium
atoms at very large internuclear distance R, and the energy E g, for a single beryllium atom. In the calculations
using this method:

a. if R — oo, there willbe Egepe = 2ERe
if R — ©o, one will obtain Eg,p, — 2E g, = const # 0

c. if R — oo, one will get Eg,p, = 2Epg,, but under condition that the CC calculation for the individual
beryllium atom was limited to single excitations

d. the result obtained contains an error coming from the size inconsistency

The cusp condition for collision of two charged particles (;¢ means the reduced mass, all quantities in a.u.):

a. follows from the requirement that a wave function cannot acquire infinite values

b. for an electron and an atomic nucleus of charge Z reads as (%g) 0 =Z{y(r=0)
F=l

c. for two electrons: (%%)::(l = %;Hr =0

d. for any two particles with charges g and g5 : (ﬂ) 0= ng1gayr(r =10)

=

dJr

The wave function s (rl , r2) =N (1 + {grlg) exp [—211— (rf + r%)] (V stands for the normalization constant,

r; and rp denote the radius vectors for two electrons, respectively, 712 means their distance) represents:

an exact wave function for harmonium (“harmonic helium atonr’) with the force constant equal to é

an orbital occupied by electrons 1 and 2
a product of two orbitals
a geminal that takes into account the Coulomb hole

> a0 op

helium atom with an approximate wave function (see question 6) (r1 . rg) =
N (1 + %1'12) exp [—;lf (:12 + r%)] From this function it follows

a. if the nuclens-electron distance is the same for the two electrons, the electrons will have a tendency to be
more often on the opposite sides of the nucleus

b. that finding the electrons at the same point in space is more probable for smaller nucleus-electron distances

c. it takes into account the Fermi hole

d. that the electrons are always on the opposite sides of the nucleus
(0

An intermediate normalization of the wave function  and the normalized function 'gﬂro means that:

0
(volvo —v§”) =1
b. the Hilbert space vector g is composed of the unit vector w(()O) plus some vectors that are orthogonal to
0
Yo
c. (‘ff(}h'"l]()) # 1
(voly”) =1
The Mgller-Plesset method, known as MP2:
a. is equivalent to the Ritz variational method (CI procedure) with the double excitations only
is based on the perturbational approach with the Hartree-Fock wave function as the unperturbed

c. represents a perturbational approach with calculation of the electronic energy up to the second order; the
zeroth order plus the first order energies gives the Hartree-Fock energy

P

B
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d. in this method the zeroth-order electronic energy represents a sum of the orbital energies of all spinorbitals
present in the Hartree-Fock Slater determinant.

10. To calculate the electronic correlation energy

a. it is sufficient to carry out calculations within the Hartree-Fock method, and then to perform the full CI
computation
it is sufficient to know the Hartree-Fock energy and all ionization potentials for the system

¢. one has to use an explicitly correlated variational wave function

d. it is sufficient to know a wave function expansion containing only the double excitations, but with their CI
coeflicients obtained in presence of all excitations

Answers

1b,c.d, 2a,b.c, 3b.d, 4a, 5a,c.d, 6a.d, 7a,b, 8b,c.d, 9b.c.d, 10a.d



