2
DENSITY MATRICES

2.1 Description of quantum states and the Dirac notation

In this chapter, the concepts and form of elementary quantum mechanics
are generalized. This allows use of variables other than coordinates for
the description of a state, permits ready discussion of physical states that
cannot be described by wave functions, and prepares the way for formally
considering the number of particles to be variable rather than constant.
Taking advantage, as appropriate, of the identity of electrons and the fact
that we are exclusively concerned with systems and equations that involve
two-particle interactions at worst, several tools are developed for formal
analysis: Dirac notation, density operators, and density matrices. We
follow Dirac (1947) and Messiah (1961); see also Szabo and Ostlund
(1982, especially pp. 9-12), and Weissbluth (1978).

We begin with the quantum state of a single-particle system. Such a
state was described in Chapter 1 by a wave function W(r) in coordinate
space (neglecting the spin for the moment). It can also be equivalently
“represented” by a momentum-space wave function that is the Fourier
transform of W(r). This, together with the quantum superposition
principle, leads one to construct a more general and abstract form of
quantum mechanics. Thus, one associates with each state a ket vector |W)
in the linear vec' r space #, called the Hilbert space (Messiah 1961, pp.
164-166). The linearity of the Hilbert space implements the superposi-
tion principle: a linear combination of two vectors C, |W,) + C, |W,) is
also a ket vector in the same Hilbert space, associated with a realizable
physical state.

Just as a vector in three-dimensional coordinate space can be defined
by its three components in a particular coordinate system, the ket |W)
can be completely specified by its components in any particular
representation. The difference is that the Hilbert space here has an
infinite number of dimensions.

In one-to-one correspondence with the space of all kets |W), there is a
dual space consisting of bra vectors (¥|. For an arbitrary bra (®| and ket
[W), the inner product {(® | ¥) is defined by

(D | W) =§_} Oy, (2.1.1)
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This is for the case that both (®| and {W) are represented in a discrete
basis with components ®} and W¥,. If the representation is continuous,
one has an integral rather than a sum, for example,

(D W) = f O*(r)W(r) dr 2.12)

where the integral is equivalent to the sum of all component products
with different values of r. Thus, the inner product of a ket and a bra is a
complex number and satisfies

(®|P)= (| D)* (2.1.3)
If
(W ¥)=1 (2.1.4)

we call [¥) and (¥| normalized. The bra (W| is said to be the conjugate
of the ket |¥).

Consider now a complete basis set {|f;)} (for example, the eigenstates
of some Hamiltonian), satisfying the orthonormality conditions

(flf)=9; (2.1.5)
Then any ket |¥) can be expressed in terms of the ket basis set |f;) by
%) =3 ¥ 1f) (2.1.6)

Taking the inner product of |¥) with a bra (f|, we find the jth
component of |¥) in the representation of the |f.),

W= (f | W) | (2.1.7)

where (2.1.5) has been used. If the basis set is continuous, the
orthonormality condition becomes

(r|r')=68(r—r) - (2.1.8)

where 6(r —r’) is the Dirac delta function, and for an arbitrary ket [¥),

¥) = [ W(r) |r) dr (2.1.9)

and
Y(r)=(r|¥) (2.1.10)

Here W(r) is precisely the ordinary wave function in coordinate space. If
a basis set |p) were used, one would instead get the momentum-space
function. Bras may be expanded similarly.

An operator A transforms a ket into another ket in the Hilbert space,

A W)Y =|A¥) = |¢') (2.1.11)
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The adjoint of A, denoted by A', transforms the corresponding bra,
(W A" = (AP| = (9| (2.1.12)

An operator is self-adjoint, or Hermitian, if it equals its adjoint;
operators corresponding to observables always have this property. For
normalized ket and bra, (2.1.11) can be written

A ) = (1) (W) [¥) (2.1.13)
and (2.1.12) as i
(WA= (%] (&) (') (2.1.14)

When a bra (| and a ket | ) are juxtaposed, one has an inner product if
(| is before | ), i.e. {||)=(]); and an operator if | ) is before ( |.
A very important type of operator is the projection operator onto a
normalized ket | X):
P.=\x){(X] (2.1.15)

The projection property is manifest when B, acts on the ket |¥) of
(2.1.6):

B W) =1£){f1¥)
=, |f.) (2.1.16)

Note that only the part of |¥) associated with |f;) is left. Projection
operators have the property

P-P.=P (2.1.17)

For this reason, they are said to be idempotent.
By inserting (2.1.7) into (2.1.6), we get

tlv>=§<ﬁ|lv>|ﬁ>=§|f,-><mlv>

-{Zmafw) (2.1.18)

from which follows

Sy =3 k=1 (2.1.19)

where [ is the identity operator. This is the closure relation. The
corresponding expression for a continuous basis set is

f dr |r) (x| = f drP = | (2.1.20)

The closure relation greatly facilitates transformation between different
representations, which makes the Dirac notation so useful. As an
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example, we compute the inner product

(@) =(D|1|¥)
=2 @ f)f1Y)
=Z O, (2.1.21)

which is identically (2.1.1). Or, consider the effect of the operator A in
(2.1.11),

LAY =2 (fIAIHSIY) = I (2.1.22)

where the complex numbers (fj| A| f;) constitute the matrix repre-
sentation of A in the basis set |f;). [Such a matrix in full in fact defines
the operator.] If we use a continuous basis set, (2.1.22) becomes

(r'|A|¥) = f drA(r', ©)¥(r) = W'(r') (2.1.23)

where A(r',1) = (r'| A |r). Equation (2.1.23) indicates that an operator
can be nonlocal. An operator A is local if

A(r',r)=A(r) 6(r' —r) (2.1.24)

Often the potential part of a one-body Hamiltonian H is local, in which
case the Schrodinger equation (1.1.1) is just a differential equation. The
Hartree—Fock exchange operator in (1.3.12) is nonlocal.

As another example of the use of (2.1.15), we may prove the formula
for the decomposition of a Hermitian operator into its eigenfunctions.
Let the kets |a;) be the complete set of eigenkets of the linear operator
A, with eigenvalues g;. Then

Al“i) zai(a’i>: AI“i)(“itzai l“i)(ai‘

A=A2lai)(a,-i=2ai|cvi)(ail (2.1.25)
Here again the sum becomes an integral in the continuous case.
If particle spin is included in the above, then the closure relation is

[dx Ix) (x| =D, jdr Ik, s)(x,s| =1 (2.1.26)

With this interpretation of integrals, all of the above equations may be
regarded as including spin, with r replaced by x.

We now turn to a quantum system of many identical particles, for
which the foregoing concepts and formulas go through when suitably
generalized. However, a new feature appears—the antisymmetry (or
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symmetry) of fermion (or boson) wave functions with respect to exchange
of indices (coordinates) of any two particles. The antisymmetric and
symmetric states span subspaces of the N-particle Hilbert space, %, the
subspaces denoted by ¥4 and 3. We focus on %4, since electrons are
fermions. In #, a normalized basis ket for N particles in suitably defined
states |&,), |&,), . . ., |an), respectively, is

loya, -+ - ) =|ay) ) - - - |aw) (2.1.27)

while for fermions, a typical normalized antisymmetric basis ket would be

@as - o) = B PPl @) (129

where the P’s are operators permutating particle coordinates and (—1)” is
the parity of the permutation P. The closure relation in %, is

> lean - an)agan - ay] =1 (2.1.29)

g, ay,..., ay

while that in 7 is

1 )
2 lman e (@ eyl =1 (2.1.30)

|
X1, Q25..., oy N'

The summations in both formulas become integrals if the indices are
continuous.
Generalizing (2.1.10), the N-electron coordinate wave function is
related to the abstract ket vector in %5 by
) lp]\((.xl.xz MR xN) = (X1x2 * XN ]‘IJN> (2 1.31)

In the case that [¥y) takes the form (2.1.28), describing N independent
electrons moving in N one-electron states, one can show from (2.1.31)
that Wy is a Slater determinant of the form of (1.3.1).

2.2 Density operators

We now consider an even more general description of a quantum state.
By (1.1.10), the quantity

Wa(xiXy - - Xn)PA(XXz -+ * Xy) (2.2.1)

is the probability distribution associated with a solution of the
Schrodinger equation (1.1.1), with the Hamiltonian operator Hy. The
main result of the present chapter will be to establish the utility of
quantities of the type

YN(XIXs - - X, XiXp s 0 s Xy) =S WAXIX; - X0 PRXX X)) (2.2.2)

which is more general than (2.2.1) in that the variables in the first factor
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are primed. The two sets of independent quantities x/x}, - - - and & SN
can be thought of as two sets of indices that give (2.2.2) a numerical
value, in contrast with the single set x;x, - - - that suffices for (2.2.1). We
therefore may think of (2.2.2) as an element of a matrix, which we shall
call a density matrix. If we set x; =x; for all i, we get a diagonal element
of this matrix, the original (2.2.1). Equivalently, (2.2.2) can be viewed as
the coordinate representation of the density operator,

[Pr) (Pl = Pu (2.2.3)
since
<XiXé R ¢ P Ixpxy - - XN) = (x1%5* - - Ile>(le| X1X - - )

=Wa(x1Xz - - - Xp)P VXX, - - - Xp) (2.2.4)

Note that Jy is a projection operator. We then have for normalized ¥,
tr () = f W (xM)Pi(xN) dxV =1 (2.2.5)-

where the frace of -the operator A is defined as the sum of diagonal
elements of the matrix representing A, or the integral if the repre-
sentation is continuous as in (2.2.5). One can also verify from (1.1.12)
that A A

(A) =tr (FnA) = tr (A9w) (2.2.6)

of which (1.1.12) is the coordinate representation.

In view of (2.2.6), the density operator 9, of (2.2.3) carries the same
information as the N-electron wave function Wy ). J, is an operator in
the same space as the vector |¥,). Note that while |¥) is defined only
up to an arbitrary phase factor, §5 for a state is unique. $, also is
Hermitian.

An operator description of a quantum state becomes necessary when
the state cannot be represented by a linear superposition of eigenstates of
a particular Hamiltonian Hy (“by a vector in the Hilbert space #y").
This occurs when the system of interest is part of a larger closed system,
as for example an individual electron in a many-electron system, or a
macroscopic system in thermal equilibrium with other mMacroscopic
systems. For such a system one does not have a complete Hamiltonian
containing only its own degrees of freedom, thereby precluding the
wave-function description. A state is said to be pure if it is described by a
wave function, mixed if it cannot be described by a wave function.

A system in a mixed state can be characterized by a probability
distribution over all the accessible pure states. To accomplish this
description, we generalize the density operator of (2.2.3) to the ensemble
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density operator
['=2 pi W) (¥ (2.2.7)

where p; is the probability of the system being found in the state |¥;),
and the sum is over the complete set of all accessible pure states. With
the |¥;) orthonormal, the rules of probability require that p; be real and
that

pi=0, 2 p=1 (2.2.8)

Note that if the interactions can induce change in particle number, the
accessible states can involve different particle numbers.

For a system in a pure state, one p; is 1 and the rest are zero; [ of
(2.2.7) then reduces to §x of (2.2.3). By construction, [ is normalized: In
an arbitrary complete basis |fy ),

T (D) =2 2 pi (fe | W) (Wi 1 e
= Eilpi (i Ek: IANAR D,
=;p,- (W, | W;) =2p,~=1 (2.2.9)
[Here and later Tr means the trace in Fock space (see Appendix C),

containing states with different numbers of particles, in contrast to the
trace denoted by tr in (2.2.5), in N-particle Hilbert space.] I is

Hermitian:
Gl P 1y = 3 pi (fe | W (W, 1 i)
N ACAR DI AT
= (flLIfe)* (2.2.10)
It also is positive semidefinite:
Fl D) =2 pi 1{fe | ¥ P=0 (2.2.11)

The p; are the eigenvalues of T
For a system to be in a pure state, it is necessary and sufficient for the
density operator to be idempotent:

P I =[NP W) = [T} (W= (2.2.12)
The ensemble density operator in general lacks this property:

[-T=> p?|w,)(w,| -l (2.2.13)
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For a mixed state, the expectation value for the observable A is given
by a natural generalization of (2.2.6),

(A) =Tr (PA) =2, p. (W A |W,) (2.2.14)

Note that this is very different from what (1.1.12) gives when |¥) is a
linear combination Y; C;|W;), in which case cross terms (W, A |¥;)
enter.

The foregoing definitions and properties also hold for time-dependent
pure-state density operators ¥ and ensemble density operators I. From
the time-dependent Schrodinger equation,

m-% Py) =H ¥y) (2.2.15)
we find 5 5 5
= = (S 1)) (Wl + W) 5 (W
A A
=l._ﬁ"'l’N)<‘l’N1 - IWN)('/}NIE
so that

. 9 . Aw
= In= [H, 7] (2.2.16)

where the brackets denote the commutator. More generally, the linearity
of (2.2.7) leads to
in 21 = (A, I (2.2.17)
ot
This is clearly true if T of (2.2.7) only involves states with the same
number of particles (canonical ensemble case). If, on the other hand,
states with different numbers of particles are allowed, to interpret
(2.2.17) one has to use the Hamiltonian in second-quantized form (see
Appendix C), which is independent of the number of particles. The
Hamiltonian in (2.2.17) is only for the subsystem of interest, neglecting
all its interactions with the rest of the larger closed system.
For a stationary state, ' is independent of time. Therefore, from

(2.2.17) .
[H,I'1=0 for a stationary state (2.2.18)

Accordingly, H and T can share the same eigenvectors.

2.3 Reduced density matrices for fermion systems

The basic Hamiltonian operator of (1.1.2) is the sum of two symmetric
“one-electron” operators and a symmetric ‘“two-electron” operator. It
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also does not depend on spin. Similarly, operators corresponding to other
physical observables are of one-electron or two-electron type and often
are spin free. Wave functions Wy are antisymmetric. These facts mean
that the expectation value formulas (1.1.12) or (2.2.6), and (2.2.14) can
be systematically simplified by integrating the W,Wx product of (2.2.1),
or its generalization (2.2.7), over N-2 of its variables. This gives rise to —
the concepts of reduced density matrix and spinless density matrix, which
we now describe (Lowdin 1955a,b, McWeeny 1960, Davidson 1976).

One calls (2.2.1) the Nth order density matrix for a pure state of an
N-electron system. One then defines the reduced density matrix of order p
by the formula

Yp(xixé . 'X;, XXp* .xp)
N r ! '
= (p) ."fYN(XIXZ'.'prp-l-l' "XN,Xlxz"'Xp"'XN)pr+1" .de .
(2.3.1)

M . . . .
where ( ) is a binomial coefficient. In particular,
p

},Z(Xixéy Xlxz)
N(N—-1
= ( > )f . .f\Il(x{xéx_., ce e Xy )W (XXX ¢ - Xy) dXs - - - dXy

(2.3.2)
and

Yl(X;, Xl) = N I ¢t ]W(X;X2 R xN)lp*(xle A XN) de et dXN (2.3.3)

Note that the second-order density matrix y, normalizes to the number of
electron pairs,
N(N-1)

> (2.3.4)

tr Y2(X1Xg, X;X;) = ff Y2(X1X2, XiX;) dX; dX, =

while the first-order density matrix y, normalizes to the number of
electrons,

teyi(x, %) = | 403, %) dx, = N (2.3.5)
Note also that y, can be obtained from y, by quadrature,
! 2 !
Yi(x1, Xp) = N1 f Y2(X1Xz, X1X;) dX; (2.3.6)

Here the full four-variable y,(x)x3,X;X;) is not necessary, only the
three-variable y,(XiX,, X;X,).
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The reduced density matrices y, and y, as just defined are coordinate-
space representations of operators 7, and 7,, acting, respectively, on the
one- and two-particle Hilbert spaces. Like {,, these operators are
positive semidefinite,

Y1(Xy, %1) =0 (2.3.7)
Y2(X1Xp, X3X5) =0 (2.3.8)
and they are Hermitian,
71(X1, X1) = ¥1 (X1, X1) (2.3.9)
Y2(Xi1X3, X1X2) = V3 (X1X2, X1X;) (2.3.10)

Antisymmetry of y, also requires that any reduced density matrix change
its sign on exchange of two primed or two unprimed particle indices; thus

Y2(XiX3, X1Xz) = — V2(X5X1, X1Xz) = —V2(XiX2, XX1) = ¥2(XoX1, XoXg)  (2.3.11)

The Hermitian reduced density operators $; and 9, admit eigenfunc-
tions and associated eigenvalues,

[ 6t x)wix) s = maa) @3.12)
and

f Yz(xixé, X1X;) 0.(x,%;) dx, dx, = giei(x;xé) (2.3.13)

For #,, the eigenfunctions ;(x) are called natural spin orbitals, and the
eigenvalues n; the occupation numbers; these are very important con-
cepts. From the rule for expressing an operator in terms of its
eigenvectors, (2.1.25), we have

= an l: ) (il (2.3.14)
or l
yi(xi, x1) = 2, ni(x) i (x) (2.3.15)
Similarly, l
f’z"—”;g:‘ 16:) (6| (2.3.16)

where the g, again are occupation numbers; the |6;) are two-particle
functions called natural geminals, which in accord with (2.3.11) are
defined to be antisymmetric. From (2.3.7) and (2.3.8) also follow

n; =0, g=0 (2.3.17)

Differential equations for the natural orbitals y; have been discussed
briefly by Lowdin (1955a). Their long-range behavior is given by Morrell,
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Parr, and Levy (1975):
Y; ~ exp [~ (2Unin) 1] (2.3.18)

where I, is the smallest ionization potential of the system.

Comparing (2.3.14) and (2.3.16) with (2.2.7) and recalling the prob-
abilistic interpretation of (2.2.7), one sees that n; is proportional to the
probability of the one-electron state |y;) being occupied; similarly g; is
proportional to the probability of the two-electron state |6;) being
occupied.

For a mixed state, a corresponding set of definitions of reduced density
matrices and operators is appropriate, and the same properties all hold.
For the case in which all _participating states have the same particle
number, N, we denote the I" of (2.2.7) as the Nth-order density operator
['n. The pth-order mixed state density matrix is then

p(x1X2° . p’ XX, * .xp)
N ) ’
:(p) e e FN(X1X2°"prp+1"'xN;x1x2"'XN)dxp+1'°'de

(2.3.19)

corresponding to an operator f‘p. Similarly one has [, and I';, the second
of which will be of special importance for us. It corresponds to the matrix

rl(Xi, Xl) = Nj M j Zpilpi(X;Xz s e XN)‘II?(X1X2 PRI XN) dxz . e de
| (2.3.20)

where the W; are the various N-electron states entering the mixed state in
question. Many of the formulas below hold for mixed states as well as
pure states, but we will not specify this in every case.

Now consider the expectation value, for an antisymmetric N-body
wave function ¥, of a one-electron operator

N
=2 Oi(x, x{) (2.3.21)
i=1

We have A A
(01> =tr (O1yn)

= | Ouxx (i, 1) i dx (23.22)

If the one-electron operator is local in the sense of (2.1.24), as are most
operators in molecular physics, we conventionally only write down the
diagonal part; thus

0, = i O,(x;) (2.3.23)
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and the corresponding expectation-value formula is

(00) = [ 10,67t )i n, (23.24)

All two-electron operators that concern us are local, and so we may
denote the operators by their diagonal part, neglecting the two delta
functions. That is, we write

N
02 - Z Oz(x,-, x]) (2.3.25)

i<j
and obtain for the corresponding expectation value

<02) =tr (02YN)

= f [ [0:(x1, X5) v2(x1x3, xlxz)]x',=x,,x'2=x2 dx, dx, (2.3.26) .

For the expectation value of the Hamiltonian (1.1.2), combining all the
parts, we obtain

E=tr (Hyy) = E.[Yu Y2l = E[v,]

, 1

= f [(‘%V% + U(rl))}’l(xl’ xl)]x3=x| dxl + fj ;— 72(X1X2, X1X2) Xm dx2
12

(2.3.27)

It is because of (2.3.6) that in fact only the second-order density matrix is
needed. In the next section, we will further simplify this equation by
integrating over the spin variables.

One might hope to minimize (2.3.27) with respect to v,, thus avoiding
the problem of the 4N-dimensional W. This hope has spawned a great
deal of work (see for example Coleman 1963, 1981, Percus 1978, Erdahl
and Smith 1987). There is a major obstacle to implementing this idea,
however, realized from pretty much the beginning. Trial y, must
correspond to some antisymmetric ¥, that is, for any guessed y, there
must be a W from which it comes via (2.3.2). This is the N-
representability problem for the second-order density matrix.

It is a very difficult task to obtain the necessary and sufficient
conditions for a reduced matrix y, to be derivable from an antisymmetric
wave function (Coleman 1963, 1981). A more tractable problem is to
solve the ensemble N-representability problem for T,; that is, to find the
necessary and sufficient conditions for a I, to be derivable from a
mixed-state (ensemble) T, by (2.3.19). It is in fact completely legitimate
to enlarge the class of trial density operators for an N-electron problem
from a pure-state set to the set of positive unit-trace density operators
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made up from N-electron states, because
Eq=tr (ATY) <tr (AT}) (2.3.28)

That is, minimization of tr (ﬁf‘N) leads to the N-electron ground-state
energy and the ground state 9 if it is not degenerate, or an arbitrary
linear combination "y (convex sum) of all degenerate ground states if it is
degenerate. Thus, the search in (2.3.27) may be made over ensemble
N-representable T',.

It is advantageous for this problem that the set of positive unit
operators [y is convex, and so also the allowable T,. [A set Cis convex if
for any two elements Y; and Y, of C, P, Y, + P,Y, also belongs to C if
0<P, 0<P, and P, + P,=1.] The situation for [’, has not yet been
practically resolved, though there has been progress (Coleman 1981). But
for I'; a complete solution has been found, as will be described in §2.6.
Given a [},

f‘1=2”i |¢i><¢il (2.3.29)

the necessary and sufficient conditions for it to be N-representable are
that
O<sn =<1 (2.3.30)

for all of the eigenvalues of I'; (Lowdin 1955a, Coleman 1963). This
conforms nicely with the simple rule that an orbital cannot be occupied
by more than one electron—the naive Pauli principle.

For states that are eigenstates of H, the Schrodinger equation itself
gives equations relating reduced density matrices of different orders
(Nakatsuji 1976, Cohen and Frishberg 1976).

2.4 Spinless density matrices

Many operators of interest do not involve spin coordinates, for instance
the Hamiltonian operators for atoms or molecules. This makes desirable
further reduction of the density matrices of (2.3.2) and (2.3.3), by
summation over the spin coordinates s, and s, (McWeeney 1960).

We define the first-order and second-order spinless density matrices by

pi(rg, 1) = f Y1(xr381, 1381) dsy

=Nf’ . flp(r;S1X2 b 'XN)IP*(IISIXZ .t XN) dsl dX2‘ i dXN

(2.4.1)
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and

. _ ' '
Po(rir2, 1ixy) = J f Yo(E1S 10285, T181X282) ds, ds;

IVIV'_1 ! ’
=—%*—2J . 'le‘(rlsﬂ‘stXs' "t XN)

X \P*(rlsll'}gzx:; e XN) dsl dSz dX3 te dXN (242)
We also introduce a shorthand notation for the diagonal element of p,,

paAry, r2) = Pa(Xikz, TiK)

NN -1
__.__g_z_lf ..fqudsl ds, dx;---dxy  (2.4.3)

and note that the diagonal element of p,(r;, r;) is just the electron density
of (1.5.1),

p(r1) = p1(r, 1)
=NJ'"’J|1PI2dS1 dXZ"'dXN (2.4.4)
Furthermore,

2 (o
pu(eh, ) == | paein, rrs) dr; (2.45)

which follows directly from (2.3.6). In particular,

p(ry) = ;V_ZLT f p2(ry, 1) dr, (2.4.6)

The expectation value formulas of (2.3.24) and (2.3.26) now read, for
spin-free operators 0;(r;) and O,(r;r,),

(6 = [ 16:)r(et, 2)eior, (2.4.7)

and
(62> = ff [OZ(rer)pZ(riré’ rer)]ri=r1,r'2=r2 drl dr2 (248)

The energy formula of (2.3.27) becomes
E= E[pl(ri, l'1) p2(r1’ r2)] = E[p2(ril'2, l‘11.2)]

= [1-4920:", Olemede + [ w@p(@) e

1
+ J ';"“ pz(l‘l, 1'2) dl‘1 dl‘z (2.4.9)
12 ’
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The three terms in this formula represent respectively the electronic
kinetic energy, the nuclear—electron potential energy, and the electron—
electron potential energy. Though of course we still have the difficulties
mentioned at the end of the previous section, it is salutatory that (2.4.9)
involves only one function of three coordinates, p(r), and two functions
of six coordinates, p,;(x', r) and p,(x;, ).

It is helpful to consider in a little more detail the third term in (2.4.9),
the electron—electron repulsion energy. If this were purely classical, it
would just be the self-repulsion energy of a distribution p(r), the quantity

1ol =3 [ | -rip(rl)p(rz) dr, dr, (2.4.10)

where the factor 1/2 enters to prevent double counting. This suggests that .

we write
P2(ry, 1) = 2p(r) p()[1 + h(r;, 1)) (2.4.11)

where h(ry, r,), defined by this formula, is the pair correlation function—
a symmetric function that incorporates all nonclassical effects. The
function k(ry, r,) satisfies an important integral condition or “sum rule”.
Inserting (2.4.11) in the right-hand side of (2.4.6), one finds

N-1
2

p(e) = 3p()IN + [ pEIh(es, ) ]

Hence, we have

f p(h(ry, 1) dr, = —1 (2.4.12)

which must hold for all r;. We shall later make use of this condition,
which encodes a great deal of information. Another way to write it, going
back to Slater (for example, Slater 1951), is obtained if we define the
exchange-correlation hole (sometimes called the exchange-correlation
charge) of an electron at r; by

Prc(X1, 1) = p(r)h(xs, 1) (2.4.13)

From (2.4.12), this is a unit charge with sign opposite to that of the
electron,

f 0.ty 1,) dry = —1 (2.4.14)
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In terms of p,., the electron-repulsion term in (2.4.9) becomes

1
Vee = jf - Pz(ru 1'2) dr, dr,
I

=J[p]+ % [ 'r“ll;P(H)ch(fb r,) dr, dr, (2.4.15)

Sometimes it is convenient to have the spinless density matrices of

(2.4.1) and (2.4.2) resolved into components arising from different spins

or products of spins (McWeeney 1960, McWeeney and Sutcliffe 1969).

First consider p,(r, r;) of (2.4.1). For any values of r} and r,, this is the
sum over spin of the diagonal parts of y,; that is,

pi(ri, 1) = yi(rie, 1) + y,(riB, r,p)
= pi*(ri, 1) + pPP(ri, ry) (2.4.16)

where the second equality just defines the notation. Also, as a byproduct,
the electron density itself is a sum of two components,

PO=p W+ p (s pW=pICD, o=af (2417)

When p® and p* are not equal, there is spin polarization, and the spin

density,
Q(r) = p*(r) — p°(r) (2.4.18)
is not zero. Similarly, we find for p,

p2(riry, 1ixy) = p5* *r 1T, T i)+ Pgﬁ'ﬁﬁ(l'il'é, Ir,)
+ 5P P(rir;, 1iry) + P51, 1yry) (2.4.19)

where notation analogous to that of (2.4.16) has been used.
Cusp conditions on p; and p, are given on pp. 42-44 and 103-104 of
Davidson (1976).

2.5 Hartree—Fock theory in density-matrix form

The trial wave function for the Hartree—Fock method is the single
determinant of spin orbitals, (1.3.1). We now rework the Hartree—Fock
theory in density-matrix language (Blaizot and Ripka 1986, p. 177,
Lowdin 1955a,b). The result will be a formulation in which the
dependent variable is the first-order density matrix itself.

Density matrices assume very simple forms when they are derived from
a single determinant. The first-order reduced density matrix, called the
Fock—Dirac density matrix, is

71(x1, X)) = 21 Yi(x1) 9! (x1) (2.5.1)
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where the y; are orthonormal spin orbitals. To prove this formula,
expand the determinant (1.3.1) in the first row and use (2.3.3), noting
that the integration over x,, . . . , Xy of a product of two (N — 1)-electron
Slater determinants gives (N — 1)! if the orbitals are the same in both,
and gives zero otherwise. The second-order reduced density matrix can
be calculated in a similar way by expanding the determinant in the first
two rows (Laplace expansion). The result is

1yi(x1,%1)  yi(x3, Xy)

X1Xo, X1X,) == , ,
VXX Xi0) =5 | %) v %)

=21, X)) 7106, X2) — Y1(x1, ) 7a(x5, 1)) (2.5.2))
More generally, one finds (Léwdin 1954b)

1! ’
Yp(xlx2 e xp, XX5 - xp)

71(X1, X;) Y1(X1, X;) o yaxi, Xp)
— }_ Yl(x.é) xl) ‘)/I(X%a XZ) e Y1(x%’ XP) (2' 53)
p! : : :
}/I(x;v X1) YI(X;; Xz) o YI(X;» xp)

so that the density matrix of any order is calculable from first-order
density matrices.
In operator form, (2.5.1) reads

?1=;|¢i)<wii (2.5.4)

and can be regarded as the projector onto the space spanned by the N
occupied spin orbitals. Not only is this form for ¥, a consequence of the
wave function being a single determinant, but, conversely, if 9, is of this
form, the wave function must be a single determinant. The proof has two
parts. First, it follows from (2.5.4) that 9, has N eigenvectors with
eigenvalues all equal to 1, the “occupied orbitals,” and an infinite
number of other eigenvectors with eigenvalues zero [compare (2.3.29)].
Construct an N-electron Slater determinant D with N eigenfunctions of 7,
with all eigenvalues equal to 1. This is a determinant giving ¥,. The
occupied-orbital set is not unique, because the determinant is invariant
up to a phase factor to a unitary transformation [see the discussion
following (1.3.26)]. Second, we can show that there can be no other
determinant giving 9,. To see this, expand the wave function in a
complete set of determinants built from the whole set of natural orbitals
of ,, calculate #,, and compare with (2.5.4). All coefficients will be zero
except the one associated with the original determinant built from the N
occupied orbitals. There is then a one-to-one mapping between a Slater
determinant and a density matrix of the form (2.5.1).
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Equivalently, one may say that a necessary and sufficient condition for
the N-electron wave function to be a single determinant (unique up to a
unitary transformation) is that §, be idempotent with trace N:

Y1¥i=1 (2.5.5)
Try,=N (2.5.6)

These formulas follow immediately from (2.5.4); the argument that they
“imply (2.5.4) is that (2.5.5) requires the eigenvalues of , to be either 1
or 0 and there are N eigenvectors with eigenvalues all equal to 1 [from
(2.5.6)]. In coordinate representation, (2.5.5) and (2.5.6) read

f yl(Xi, X'l'))’l(x'l', Xl) dxll' = '}/I(Xi, Xl) (2.5.7)
and

j Yi(x1, x1) dx; =N (2.5.8)

Inserting (2.5.2) in (2.3.27), the Hartree—Fock energy becomes [com-
pare (1.3.2)}]

Euelv:] = f [(—3VF + v(x1))ya(x1, X1) i =x, A%

1 1
+i f[ T [71(x1, X1) 71(X2, X2) — ¥1(%1, X2) 71(X2, X1)] dX; dx,,
12
(2.5.9)

In the Hartree—Fock method, one seeks to minimize this functional of
Y1, over the set of all y, of the form (2.5.1), or, equivalently, over all y,
satisfying (2.5.7) and (2.5.8).

This constrained minimization can be implemented by using Lagrange
undetermined multipliers (see Appendix A). The condition (2.5.7)
depends on x; and x,, so that the multiplier associated with it must
depend on x; and x,; call it a(x,, x;). Let 8 be the multiplier for (2.5.8).
The variational problem may then be written as

5{EHF[Y1] - ff dx; dx;a(x, X;)[j Y1(x1, X7)v1(x], x) dxi — y,(x1, X1)]

— ﬁ[f O(x; — x,)71(x1, X;) dx; dx, — N]} =0 (2.5.10)

Taking the functional derivatives (see Appendix A), one gets the
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Euler-Lagrange equation for the problem:

F(xq,x1) — f dya(y1, X1)Y1(X1, ¥1)

- [ dziax, m)p e, xi) + o, %)~ B304 —x) =0 25.11)

where F(x,,x;) is the matrix for the Fock operator F in the coordinate
representation,

OEur{Y]
Sy (x1, xy)

1
= (4734 0(x) (5 —x) + 8(xi — %) [ = a0, ) v,
12

F(xb xi) =

1 ,
’“;_‘"’ YI(XI) Xl) (2.5.12)

11

The equivalence of this definition of the Fock operator with the previous
(1.3.9) becomes clear if we calculate

(il £ ly) = [ dx, (il £ ) (31 9)

=[-3Vi+u(x) +j(x) —kGxD]y(x)  (2.5.13)

where j and £ are as defined in (1.3.11) and (1.3.12). Note the simple
form of the last, the nonlocal exchange, term in (2.5.12).

Equation (2.5.11) can be regarded as the coordinate representation of
an operator equation in one-particle space:

F-9a—ay,+a—BI=0 (2.5.14)

where I is the identity operator. Multiplying this equation on the right by
#1, and then on the left, and subtracting the results, we obtain

9, — 9, F=0 (2.5.15)

Thus the operators ¥ and ¥; commute and have common eigenfunctions.
These common eigenfunctions are the Hartree~Fock orbitals of (1.3.31).
The ¥, that is a solution of (2.5.15) can be constructed from these orbitals
via (2.5.4). This y,, denoted by ', thus minimizes the Hartree—Fock
energy functional Eyg[y,] of (2.5.9); that is,

Exi{yi"] < Eulv4] (2.5.16)

for any idempotent vy, of trace N. It is obvious that Eye{y™] is above the
true ground-state energy E (by the correlation energy), since Epg[yi¥] is
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the minimum over only the class of all determinantal wave functions.
Lieb (1981) in fact proved a more general result than (2.5.16): y; on the
right-hand side of (2.5.16) can be replaced by any N-representable T,
(satisfying (2.3.30)). In summary,

Eo<Euflyi"] < ExelT1] (2.5.17)

Finally, we can express the Hartree—Fock energy functional in terms of
the spinless first-order density matrix p,(xi, r;) of the previous section,
and exhibit the pair-correlation function and exchange-correlation hole
for Hartree~Fock theory. From (2.5.2), we have, for the components of
the diagonal part of p,,

P3Ny, 1) = 2[ “(r)p *(r2) — pi(ry, "z)Pir(rz, r)]
P2 P (1'11'2, rr) = '2‘P *(x)p ﬁ(l'z)

where the notation of the last section has been used. Two other similar
components can be written down if we exchange & and f spin labels in
the above formulas. [Since the function p3'°>“1°%(x,r,, rr,) is proportional
to the probability of finding an electron at r; with spin o, and another
electron at r, with spin o,, note from (2.5.18) that the determinantal
wave function only describes the correlation of like-spin electrons—the
“exchange effect” in Hartree—Fock theory.] The spinless second-order
density matrix, by (2.4.19) and (2.5.18), becomes

p2(xirs, 1iry) = %P(l'l)ﬁ(fz)
- %[Piw(fly )P (r, 1) + Pfﬁ(l‘l, r)ph ﬁ('z, r)] (2.5.19)

Inserting (2.5.19) into (2.4.9), one gets the total energy formula

(2.5.18)

Exuelpi] = f [(=3V + v(x))p(x1, X1)]sis, dy

+% J[ é p(x)p(ry) dr; dr, — - ff — [T (xs, 12)pT(x2, 11)

+ P?ﬂ(fl, rz)Pfﬁ(ru r,)] dr, dr,

=T[pi] + Veelp] +J[p] — K[p1] (2.5.20)

where
Tlpil= f [—2Vipu(rl, 1)) =, dry (2.5.21)
Vielol = | v(0)p(e) dr (2.5.22)

1 1
= [[ = o) dr ar, (2.5.23)
4))
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and

Klp:]== ]f — [pT%(r1, 1) p7*(xz, 11) + pi B(l‘b I>)Pi ﬁ(’z: r,)] dr, dr,
(2.5.24)

For the closed-shell case of an even number of electrons pairwise
occupying N/2 spatial orbitals,

pE(r, 1) = pPP(r, 1) =3p(r,,r,)  [closed shell]  (2.5.25)
and (2.5.24) becomes

K[p4] = f f p1(r;, 12)py(ra, 1)) drydr,  [closed shell] (2.5.26)
I»

This is equivalent to the last term of (1.3.19).

Comparing the electron—electron repulsion in (2.5.20) with (2.4.15),
we see that in the Hartree—Fock approximation the exchange-correlation
hole is given by

1 ‘pl(rb r2)|2
2 p(r;)
From (2.4.13) the pair correlation function is

P, 1) =pF(r, 1) = [closed shell] (2.5.27)

HF _ 1 lpa(ry, 1)

h™(xy, 13) 4——————————~p o) [closed shell] (2.5.28)
The “correlation” included here is among electrons of the same spin
only, as again can be seen by noting in (2.5.9) that the spin integrations
over the y,(Xx,%X;)71(x,,X;) factor give zero for contributions from
different spin states for particles 1 and 2. The term correlation as defined
in §1.4 is over and above this correlation already included in the
single-determinant description, so we sometimes use the notation pfF for
the exchange hole of (2.5.28). Note that the sum rules of (2.4.12) and
(2.4.14) are satisfied in Hartree—Fock theory:

| e, 1) de, = | ey dr = 1 (2.5.29)

This property is preserved for any approximate p, that is N-representable.

2.6 The N-representability of reduced density matrices

The necessary and sufficient conditions for a given first-order density
matrix to be derivable from a mixed-state density operator were stated in
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(2.3.30). In this section, we give the proof of this theorem and also briefly
discuss the corresponding problem for the second-order density matrix.

Necessary conditions on I'; and I, are conditions that they satisfy when
they satisfy (2.3.19) for a proper I'y. Sufficient conditions are those that
guarantee the existence of a I'y that reduces to this I'; and/or I',. The set
of T'; or T', that simultaneously satisfies both necessary and sufficient
conditions is called the set of N-representable I'; or I',. Thus, if the
energy (2.4.9) is minimized over sets I'; and T', satisfying only necessary
conditions (such sets are larger than the corresponding N-representable
sets), an energy lower than the true energy—lower bound to the
energy—can be obtained; if the energy is minimized over sets satisfying
only sufficient conditions (such sets are smaller than the corresponding
N-representable sets), an energy higher than the true energy is
delivered—an upper bound to the energy. In the Hartree—Fock method,
for example, the density matrix y, satisfies the sufficients (2.5.5) and
(2.5.6); Hartree—Fock energies are consequently upper bounds for true
energies. Lower-bound studies are rarer; they include pioneering works
by Garrod and Percus (1964) and Garrod and Fusco (1976). Note that if
one minimizes over all sets satisfying the sufficient conditions, the
ground-state energy is obtained.

We now derive some necessary conditions on y; and y, imposed by
N-representability—the so-called Pauli conditions (Coleman 1981). These
are that if |y;) is some normalized spin-orbital state and |y,y;) is a
normalized 2 X 2 Slater determinantal state built from orthonormal 1,
and v;, then

0= (il ly) <1 (2.6.1)
and
O0< (vl 72 |viy;) <1 (2.6.2)
or, in the coordinate representation,
0= [ [ ax dxiwraym, x)ix) <1 (2.6.3)
and

0<1 f j j ] dx, dx; dx, dx; det [} (x)) ¥} (x})] (2.6.4)

YZ(xixé’ X1X2) det ['(I’,'(Xl) w;'(XZ)] =1

These results can be derived in various ways.

We follow Coleman (1981) and use the method of second quantization
as described in Appendix C. For each member of an arbitrary orthonor-
mal set {v,}, there is a creation operator d;" and an annihilation operator

d;. The corresponding creation and annihilation field operators are

e
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defined as )
P =3 pra; 2.6.5)

and

P(x) = 2, Yi(x)d; (2.6.6)

In terms of these, for a state |¥) the first- and second-order reduced
density matrices y; and y, of (2.3.2) and (2.3.3) are given, respectively,
by (see Appendix C)

(%1, %) = (W] 9 (x0) P (x7) [¥) (2.6.7)

Ya(XiXz, X1Xp) = 3 (9| ‘Z’+(X2)‘i’+(xl)1/3(xi)‘z’(xé) ¥) (2.6.8)
We use these to establish, in turn, (2.6.1) and (2.6.2).
Inserting (2.6.7) into the integral in (2.6.3) and using (2.6.5) and
(2.6.6), we find, if we take the set {vy;} to include y; as one of its
members (which we can always do),

(i) 91 l9:) = ff dx, dx;9; (xq) (P ; Y (x)a) Z Y(x1)d; [¥) yi(x,)
= (W| 47 d; [¥) (2.6.9)

Here, the operator

A

N;=d}3g (2.6.10)
is the occupation number operator for the ith orbital. It is idempotent:
N?=d;} a4} 6, =a; (1 - a7a,)é, =N, (2.6.11)

Thus N is a projection operator. But the expectation value of any
projection operator is always nonnegative and not greater than 1:

(P PP |W) =D (W PE)HP<D (P |W)P=1 (26.12)

where {¥;} is any complete set.
Therefore the right-hand side of (2.6.9) is a nonnegative number less

than or equal to 1, proving (2.6.1). We note in passing that the total
number operator is

N=2 N;=2 afa, (2.6.13)
For the proof of (2.6.2), we n;ed the lquantity
P(x)P(xz) = E Pi(X1)4; Z V;(%2)4;
= 2 2 (X0 ¥;(%:)8:d;
= 2, [Wix)w;(%) — ¥;(xx)wi(x1) 1

i<j

= >, det [y(x,) y;(x,)]d:d; (2.6.14)

i<j
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where the fact has been used that 4; and 4; anticommute (see Appendix
C). Inserting (2.6.14) and its adjoint into (2.6.8) and then (2.6.4), and
using the orthogonality and normalization property of the 2 X2 deter-
minants, we find

<¢i¢j| V2 |¢i¢j> = <‘Pi &f&?&i&j tllf>
= (Y| NN, |¥) (2.6.15)

From the fact that the product of two projection operators is still a
projection operator, we then see that (W|N,N;|[¥) in (2.6.15) is a
nonnegative number less than or equal to 1. Equation (2.6.2) follows.

Equation (2.6.1) is equivalent to the requirement that the eigenvalues
of ¥, the occupation numbers n; of (2.3.12), fall in the range 0 to 1:

0<m=<1 (2.6.16)

Equation (2.6.3) is not a condition on the eigenvalues of ,, however,
since the eigenfunctions of , are not in general 2Xx2 Slater
determinants.

Leaving the analysis of the N-representability of ¥, aside, we complete
the basic story of ¥, by asserting and proving that conditions (2.6.16) are
not only necessary but also sufficient conditions for the ensemble-N-
representability of a first-order reduced density matrix (Coleman 1963,
1981). Necessity has just been proved; it remains to prove sufficiency.

We need a simple lemma about vectors and convex sets. Recall from
§2.3 that a set is convex if an arbitrary positively weighted average of any
two elements in the set also belongs to the set. Define an extreme element
of a convex set as an element E such that E =p,Y; + p,Y, implies that Y;
and Y, are both multiples of E. Then the lemma states that the set £ of
vectors v= (v, ¥y, . . .) in a space of arbitrary but fixed dimension with
0=<v,<1and ), v; = N is convex and its extreme elements are the vectors
with N components equal to 1 and all other components equal to zero.
That £ is convex is obvious. The condition on £ requires that each
element has at least N positive components. Thus, a mean of any two
vectors has more than N components unless the nonzero components of
the original vectors are the same and all equal to 1. The vectors with N
components equal to 1 are therefore extreme. No other type of vector is
extreme, as any vector with more than N positive components can always
be resolved into an average of several extreme elements.

Given this lemma, it is clear that any 9, or ['; satisfying (2.6.16) is an
element of a convex set whose extreme elements are those y{ (or I)) that
have N eigenvalues equal to 1 and the rest equal to zero. Each of these 7
(or IY), according to the discussion in §2.5, determines up to a phase a
determinantal N-electron wave function and a unique corresponding
pure-state density operator $%. Some positively weighted sum of these ¥
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will be the Ty that reduces to the given #, (or I';) through (3.3.20).
Thereby, sufficiency is proved.

2.7 Statistical mechanics

As was shown in §2.2, when a system is in a mixed state, rather than a
pure state, it is mandatory to describe it with density operators. Such is
the case for a system at some finite temperature, for the ignorance of the
details of the interaction between system and surroundings makes defining
an appropriate complete Hamiltonian impossible. There will be a
probability distribution over accessible pure states of the form (2.2.7),
with probability p; for the accessible state |¥;), in the ensemble density
operator I The probabilities must be determined by a statistical-
mechanical argument appropriate for each particular case (Gibbs 1931,
Feynman 1972, McQuarrie 1976).

The key quantity to conmsider is the entropy of the probability

distribution,
S= "‘kB zp, lnp,- (27.1)

=—kp Tr (['InT) (2.7.2)

The first formula is the definition, the second follows from the fact that
the trace of an operator is the sum of its eigenvalues. The constant kj is
Boltzmann’s constant.

First we consider the canonical ensemble, which is a mixture of pure
states all having the same particle number N. Consequently

szszi ,WNi><lei, (2-7-3)

We seek to determine the py; by the maximum-entropy principle. At
equilibrium, § will be a maximum subject to two constraints. The
probabilities must sum to unity, to which we attach a Lagrange multiplier
A, and the expectation value of Hy must equal the observed energy,

E=tr(['vH) (2.7.4)

to which we attach another Lagrange multiplier a. (The notation tr
indicates a trace over N constant states only.) The variational principle
thus is

S{—kptr (CxInTy) + a(tr TyA — E) + Atr Ty — 1)} =0 (2.7.5)

One can carry out the variation either by varying both the Py; and |yy;)
in (2.7.3), or more elegantly, by working with [y itself. Doing the latter,
use [y =T%+ 6y in (2.7.5) and find

tr [6Tn(—kzIn T+ 14+ a +1)]=0 (2.7.6)
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This gives, after determination of A from the normalization condition on

IN’ ~ e'ﬁg
=— 2.7.7
Y tr (e PH) 27.7)
where
- 1
== 2.7.
b= =ts (2.7.8)

in which 6 is the temperature. Note that the final f‘?v commutes with Hy,
in agreement with (2.2.18). That (2.7.7) corresponds to a maximum S can
be checked readily.

These results can be reformulated as follows. Define the Helmholtz
free energy A for the density operator [y by

A ~ (1. 4 A
A[f]=tr FN(E Infy + H) ~E—06S (2.7.9)
Then for all positive and unit trace [y,
A[TR] < A[TY] (2.7.10)
where
. 1
A[l}] = *,—Sln Zn (2.7.11)

with Z,, the partition function
Zy=tre P4 (2.7.12)

One proof of (2.7.10) is given by Feynman (1972). Another is presented
in §3.5.

Now we turn to the grand-canonical-ensemble approach. The system is
allowed to have a more general I in which there are nonzero probabil-
ities associated with different particle numbers, but an average number of
particles equal to some observed number

Tr (TN)=N (2.7.13)

The entropy must be maximized subject to constant energy (2.7.4) and
constant particle number (2.7.13). The result is the formula for the
equilibrium I, o

. e~ BUH—uN)

B (2.7.14)

where p is the Lagrange multiplier for the constraint of (2.7.13) and is
called the chemical potential.
Again there is a reformulation. Define the grand potential by

. NS D
Q[f=Tr F(E Inf"+ 4 - uN) =E—6S—uN  (2.7.15)
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Then for all positive and unit trace T,

Q] = Q[ (2.7.16)
where

Q] =~ —IB- InZ (2.7.17)

and Z is the grand partition function
Z =Tre BH-u (2.7.18)

A somewhat involved proof of (2.7.16) may be found in a paper by
Mermin (1965), who followed Gibbs (1931, p. 131). A much simpler
proof is given in §3.6.

It is instructive to compare the three minimum principles we have now
established: (1.2.3) for the ground-state energy, (2.7.10) for the equi-
librium Helmbholtz free energy, and (2.7.16) for the grand potential. The
second extends the first to finite temperature within the same N-particle
Hilbert space. The third also applies to a finite-temperature system but to
the larger Fock space that is the product space of all the different
N-constant Hilbert spaces. The density-functional theory described in the
next chapter will be structured similarly, proceeding from the ground-
state theory based on (1.2.3) to finite-temperature extensions based on
(2.7.10) and (2.7.16). The zero-temperature limits of the finite-
temperature theories are of special interest.



