Where Are We?

We are on the most important branching out of the TREE.

An Example

“Any separation is a link.”
Simone Weil

Separation of Electronic and
Nuclear Motions

A colleague shows us the gas phase absorption spectra separately: of the hydrogen atom, of the chlorine atom, and of
the hydrogen chloride recorded in the ultraviolet and visible (UV-VIS), infrared (IR) and microwave ranges. In the
IR range, neither the hydrogen atom nor the chlorine atom have any electromagnetic wave absorption. However, on
the other hand, the hydrogen chloride diatomic molecule that is formed by these two atoms has a very rich absorption
spectrum with a quasi-regular and mysterious structure shown in Fig. 6.6 on p. 286. If the theory given in the previous
chapters is correct. then it should explain every detail of such a strange spectrum. We also hope we will understand

why such a spectrum may appear.

What Is It All About?

Separation of the Center-of-Mass Motion (A)
Exact (Non-Adiabatic) Theory (84¢)
Adiabatic Approximation (A)
Born-Oppenheimer Approximation (A)

= ...And a Certain Superiority of Theory Over Experiment
Vibrations of a Rotating Molecule (A)

=  One More Analogy
*  What Vibrates, What Rotates?
*  The Fundamental Character of the Adiabatic Approximation-PES
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Basic Principles of Electronic, Vibrational, and Retational Spectroscopy (A)

= Vibrational Structure
=  Rotational Structure

Approximate Separation of Rotations and Vibrations (A)
Understanding the IR Spectrum: HCI (S¢)

= Selection Rules

= Microwave Spectrum Gives the Internuclear Distance
* IR Spectrum and Isotopic Effect

* IR Spectrum Gives the Internuclear Distance

= Why We Have a Spectrum “Envelope”

* Intensity of [sotopomers’ Peaks

A Quasi-Harmonic Approximation ()
Polyatomic Molecule (5 ¢)

*  Kinetic Energy Expression

*  Quasi-Rigid Model-Simplifying by Eckart Conditions

*  Approximation: Decoupling of Rotations and Vibration

*  Spherical, Symmeifric, and Asymmetric Tops

. Separation of Translational, Rotational, and Vibrational Motions

Types of States (©4¢)

*  Repulsive Potential

*  “Hook-like” Curves
Continuum

*  Wave Function “Measurement”

Adiabatic, Diabatic, and Non-Adiabatic Approaches (S4)
Crossing of Potential Energy Curves for Diatomics (©U)

*  The Non-Crossing Rule
*  Simulating the Harpooning Effect in the NaCl Molecule

Polyatomic Molecules and Conical Intersection ($0U)

= Branching Space and Seam Space
= Conical Intersection
*  Berry Phase

Beyond the Adiabatic Approximation (4)

*  Vibronic Coupling

= Consequences for the Quest of Superconductors

=  Photostability of Proteins and DNA

*  Muon-Catalyzed Nuclear Fusion

= “Russian Dolls” or a Molecule Within a Molecule
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Nuclei are thousands of times heavier than electrons. As an example, let us take the hydrogen atom. From the
conservation of momentum law, it follows that the proton moves 1840 times slower than the electron. In a polyatomic
system, while a nucleus moves a little, an electron travels many times through the molecule. It seems that much can
be simplified when assuming electronic motion in a field created by immobile nuclei. This concept is behind what is
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called adiabatic approximation, in which the motions of the electrons and the nuclei are separaled.l Only after this
approximation is introduced can we obtain the fundamental concept of chemistry: the molecular structure in 3-D
space.

The separation of the electronic and nuclear motions will be demonstrated in detail by taking the example of a
diatomic molecule.

Why Is This Important?

The separation of the electronic and nuclear motions represents a fundamental approximation of quantum chemistry.
Without this, chemists would lose their basic model of the molecule: the 3-D structure with the nuclei occupying
some positions in 3-D space. with chemical bonds. etc. This is why this chapter occupies the central position on the
TREE.

What Is Needed?

=  Postulates of quantum mechanics (Chapter 1)

=  Separation of the center-of-mass motion (see Appendix [ available at booksite elsevier.com/978-0-444-59436-5
on p. €93)

= Rigid rotator (Chapter 4)

=  Harmonic and Morse oscillators (Chapter 4)

= Conclusions from group theory (see Appendix C available at booksite elsevier.com/978-0-444-59436-5 p. el7,
advised)

= Dipole moment (see Appendix X available at booksite.elsevier.com/978-0-444-59436-5 p. €169, occasionally
used)

Classical Works

A fundamental approximation (called the Born-Oppenheimer approximation) was introduced in a paper called “Zur
Quantentheorie der Molekeln” by Max Born and Julius Robert Oppenheimer in Annalen der Physik, 84, 457 (1927).
The approximation follows from the fact that nuclei are much heavier than electrons. % The conical intersection
problem was first recognized by three young and congenial Hungarians: Janos (later John) von Neumann and Jené
Pal (later Eugene) Wigner in the papers “Uber merkwiirdige diskrete Eigenwerte” in Physikalische Zeitschrifi, 30,
465 (1929), and “Uber das Verhalten von Eigenwerien bei adiabatischen Prozessen” also published in Physikalische
Zeitschrifi. 30, 467 (1929), and later in a paper “Crossing of Potential Surfaces” by Edward Teller published in
the Journal of Physical Chemistry 41. 109 (1937). % Gerhard Herzberg was the greatest spectroscopist of the 20th
century, author of the fundamental three-volume work: Spectra of Diatomic Molecules (1939), Infrared and Raman
Spectra of Polvatomic Molecules (1949) and Electronic Spectra of Polvatomic Molecules (1966). % The world’s
first computational papers using a rigorous approach that went beyond the Born-Oppenheimer approximation for
molecules were two articles by Wiodzimierz Kotos and Lutostaw Wolniewicz. The first was “The coupling between
electronic and nuclear motion and the relativistic effects in the ground state of the Ha molecule,” published in Acta
Physica Polonica, 20, 129 (1961). The second was “A complete non-relativistic treatment of the Hy molecule.”
published in Physics Letters, 2, 222 (1962). % The discovery of the conical intersection and the funnel effect in
photochemistry is attributed to Howard E. Zimmerman: Molecular Orbital Correlation Diagrams, Mdbius Systems,
and Factors Controlling Ground- and Excited-State Reactions [Journal of the American Chemical Society, 88, 1566

! This does not mean that electrons and nuclei move independently. We obtain two coupled equations: one for the
motion of the electrons in the field of the fixed nuclei, and the other for the motion of the nuclei in the potential
averaged over the electronic positions.
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(1966)] and to Josef Michl [Journal of Molecular Photocheniistry, 4, 243 (1972)]. Important contributions in this
domain were also made by Lionel Salem and Christopher Longuet-Higgins.

John von Neumann (1903-1957), known as Jancsi
(then Johnny), was the wunderkind of a top Hun-
garian banker. (Jancsi showed off at receptions by
reciting from memory all the phone numbers after
reading a page of the phone book.) He attended
the famous Lutheran High School in Budapest, the
same one as Jeno Pal Wigner (who later used the
name Eugene). In 1926, von Neumann received his
chemistry engineering diploma; and in the same
year, he completed his Ph.D. in mathematics at
the University of Budapest. He finally emigrated
to the United States and founded the Princeton
Advanced Study Institute. John von Neumann was a
mathematical genius who contributed to the
mathematical foundations of quantum theory, com-
puters, and game theory.

Edward Teller (1908-2004), American physicist of Hungarian origin
and professor at the George Washington University, the University of
Chicago, and the University of California. Teller left Hungary in 1926,
received his Ph.D. in 1930 at the University of Leipzig, and fled Nazi
Germany in 1935. Teller was the project leader of the U.S. hydrogen
bomb project in Los Alamos, believing that this was the way to over-
throw communism (*| am passionately opposed to killing, but | am even
more passionately fond of freedom”). The hydrogen bomb patent is

owned by Teller and Stanistaw Ulam.

Eugene Paul Wigner (1902-1995), American chemist,
physicist and mathematician of Hungarian origin
and professor at Princeton University. At the age
of 11, Wigner, a schoolboy from Budapest, was
in a sanatorium in Austria with suspected tuber-
culosis. Lying for hours on a deck chair reading
books, he was seduced by the beauty of mathemat-
ics (fortunately, it turned out that he did not have
tuberculosis).

In 1915, Wigner entered the Lutheran High School
in Budapest. Fulfilling the wishes of his father, who
dreamed of having a successor in managing the famil-
ial tannery, Wigner graduated from the Technical Uni-
versity in Budapest as a chemist. In 1925, at the
Technical University in Berlin, he defended his Ph.D.
thesis on chemical kinetics “Bildung und Zerfall von
Molekdilen,” under the supervision of Michael Polanyi,

I
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von Neumann made a strange offer of a professor-
ship at the Advanced Study Institute to Stefan Banach
from the John Casimir University in Lwow. He handed
him a check with “1” handwritten on it and asked
Banach to add as many zeros as he wanted. “This is
not enough money to persuade me to leave Poland,”
answered mathematician Banach.
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a pioneer in the study of chemical reactions. In 1926
Wigner left the tannery.
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By chance he was advised by his colleague von
Neumann to focus on group theory (where he obtained
the most spectacular successes). Wigner was the first
to understand the main features of the nuclear forces.

In 1963 he won the Nobel Prize “for his contributions
to the theory of the atomic nucleus and elementary
pariicles, particularly through the discovery and apph-
cation of fundamental symmetry principles.”
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Christopher Longuet-Higgins (1923-2004), professor
at the University of Sussex, Great Britain, began his
scientific career as a theoretical chemist. His main
achievements are connected with conical intersec-
tion, as well as with the introduction of permutational
groups in the theoretical explanation of the spectra of
flexible molecules.

Longuet-Higgins was elected the member of the
Royal Society of London for these contributions. He
turned to artificial intelligence at the age of 40, and in
1967, he founded the Depariment of Machine Intelli-
gence and Perception at the University of Edinburgh.
Longuet-Higgins investigated machine perception of
speech and music. His contribution to this field was
recognized by the award of an honorary doctorate in

Music by Sheffield University. Courtesy of Professor
John D.Roberis.

6.1 Separation of the Center-of-Mass Motion
Space-Fixed Coordinate System (SFCS)

Let us consider first a diatomic molecule with the nuclei labeled a, b, and n electrons. Let us
choose a Cartesian coordinate system in our laboratory (called the space-fixed coordinate system,
or SFCS) with the origin located at an arbitrarily chosen point and with arbitrary orientation of
the axes”. The nuclei have the following positions: R, = (X, Y4, Z,) and Ry, = (Xp, Yp, Zp),
while electron i has the coordinates x;, y;, z}.

We write the Hamiltonian for the system (as discussed in Chapter 1):

. 12 12 "R
H=— A= A= —A 4V,
oM, am,t §2m i

(6.1)

where the first two terms stand for the kinetic energy operators of the nuclei. the third term
corresponds to the kinetic energy of the electrons (m is the electron mass, and all Laplacians
are in the SFCS), and V denotes the Coulombic potential energy operator (interaction of all the

2 For example. right in the center of the Norwich market square.
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particles, nucleus-nucleus, nuclei-electrons, and electrons-electrons)”:

ZoZpe? &2 &2 &2
=22 2y — 2y —4 Y —. (6.2)
R Z Yai Zl: rpi - rij

While we are not interested in collisions of our molecule with a wall or similar obstruction,
we may consider a separation of the motion of the center of mass, and then forget about the
motion and focus on the rest (i.e., on the relative motion of the particles).

New Coordinates

The total mass of the molecule is M = M, + My 4+ mn. The components of the center-of-mass
position vector are

1
xzﬁ Maxﬂ+beb+me;
I
] !
Y:E M(,Yu+Mbe+Zmyi
I
1
Z=H M(,Z{I—I—M;,Z;,—I—Zmz;f

I

Now, we decide to abandon this coordinate system (SFCS). Instead of the old coordi-
nates, we will choose a new set of 3n + 6 coordinates (see Appendix I available at booksite.
elsevier.com/978-0-444-59436-5 on p. €93, choice II):

*  Three center-of-mass coordinates: X, Y, Z

* Three components of the vector R = R, — R, that point to nucleus a from nucleus b

e 3n electronic coordinates x; = x;.' - %(Xﬂ + Xp), and similarly, for y; and z;, fori =
1,2, ...n, which show the electron’s position with respect to the geometric center” of the
molecule.

Hamiltonian in the New Coordinates

The new coordinates have to be introduced into the Hamiltonian. To this end, we need the
second derivative operators in the old coordinates to be expressed by the new ones. To begin

3 Do not confuse coordinate Z with nuclear charge Z.

411 the origin were chosen in the center of mass instead of the geometric center, V becomes mass-dependent
(I. Hinze, A. Alijah and L. Wolniewicz, Pol. J. Chem., 72, 1293 (1998); cf. also see Appendix I available at
booksile.elsevier.com/978-0-444-59436-5, example 2. We want to avoid this.
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with (similarly as in Appendix I available at booksite.elsevier.com/978-0-444-59436-5), let us
construct the first derivative operators:

3 X & 9Y & dZ & OR, d AR, 8  BR. @

— =t — — + —— + + o +
80X, 8X,0X 8X,8Y  3X,dZ  3X,0R, 8X,9R, 98X, 3R,
ax; 9 ay; 9 dz; 0
+;axﬁa_xf+ !, aXﬂEJF!ZaXaazi
X 8  OR, 8 dxi & M, d

- — Z

80X, 90X ' 98X, 0R, 39X, ox _ M 3X T

8x1

and the same goes for the coordinates ¥, and Z,. For the nucleus b, the expression is a little bit

1 - . 4 — Mb d _— 0 _ l i
different: aX; = M3X — R, — 2 2-i 3

For the first derivative operator with respect to the coordinates of the electron i. we obtain:
ad X 9 aYy a 0Z 9 IRy 0 dR, 0 oR; 0
& ! = o f o« + ot av + ¥ Ifr— + a . f + < :!' & + o T
dx; 9dx;dX  9x; Y  Ox;0Z  Ox; OR,  Odx; OR,  0x; IR

+Zax dx; +Z€]x [3y; F ;Eixlffizj

axa dx; 0 m 4 d

~ X 9X axiox  MOX ' om

and the same goes for y! and z;.
Now, let us create the second derivative operators:

2 2 2 a2 2 2
& (Mo b 150\ _ (M E B 15D
ox2 \Max "R, 24<ax) ~\M) ax2 T aRZ " 4\ ax

M, d @ ) 9 M, d 3
M 30X 9R, R, 7 dxi M 3X %’
2 2
92 M, 9 9 1 9 My \?2 32 2 1 )
e e B e P i
ax2 M 3X R, ax; M) X2 0R? 4\ dx
M, 8 @ 9 3 My d P

M 90X OR, * dR, - ax; M aX ax;’

¥ _(mad 3 2_(m)2 d2+82+21113 d
a(x;)z_ MaxX =~ dx;)  \M/ 3X?2  3x? “TMOXox;

After inserting all this into the Hamiltonian [Eq. (6.1)] we obtain the Hamiltonian expressed
in the new coordinates’:

5 The potential energy also has to be expressed using the new coordinates.
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n h?2 . N
H=|—A H, H’, 6.3
[ M XYZ] + Hp + (6.3)

where the first term means the center-of-mass Kinetic energy operator and I'}(} is the electronic
Hamiltonian (clamped nuclei Hamiltonian):

A h2
Hy=— —A; +V, 6.4
0 Z = (6.4)
while A; = %4—%4—%311(1
474 ﬁ'z 27/
H =—=—Agp+ H", (6.5)
21

. 82 82 82
with Ap = 55 + 55 + -5, where
arRZz T 3Rz T RZ

g | P )IR7 LR Yy SV
- 8“ 1 2 M Mb R 1 ]

] I

and v denotes the reduced mass of the two nuclei (! = 1\/."&.,_1 + M, l).

The Ho does not contain the kinetic energy operator of the nuclei, but it does contain all
the other terms (this is why it is called the electronic or clamped nuclei Hamiltonian): the first
term stands for the Kinetic energy operator of the electrons, and V means the potential energy
corresponding to the Coulombic interaction of all particles. The first term in the operator A’
(le..— é*—i AR), denotes the kinetic energy operator of the nuclei®, while the operator " couples
the motions of the nuclei and electrons’.

What moves is a particle of reduced mass y and coordinates Ry, Ry, and R;. This means that the particle has the
position of nucleus a, whereas nucleus b is at the origin. Therefore, this term accounts for the vibrations of the
molecule (changes in length of R). as well as its rotations (changes in orientation of R).

The first of these two terms contains the reduced mass of the two nuclei. where V; denotes the nabla oper-
ator for electron i,V; = i a%; +j % + ka% with i, j, k-the unit vectors along the x-,y-, and z-axes. The
second term is nonzero only for the heteronuclear case and contains the mixed product of nablas: Vg V; with
Vg = :B—}}‘T +j3—?;.; + ka—?\‘; and Rx, Ry, R; as the components of the vector R.
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After Separation of the Center-of-Mass Motion

After separation of the center-of-mass motion [the first term in Eq. (6.3) is gone; see Appendix I
available at booksite.clsevier.com/978-0-444-59436-5 on p. ¢93], we obtain the ecigenvalue
problem of the Hamiltonian:

H=Hy+H. (6.6)

This is an exact result, fully equivalent to the Schrédinger equation.

6.2 Exact (Non-Adiabatic) Theory

The total wave function that describes both electrons and nuclei can be proposed in the following
form® (N = o0):

J’\:"

Y@, R) = ) i R fi(R), 6.7)
k

where ¥ (r; R) are the eigenfunctions of P}o:

8 Where would such a form of the wave function come from?

If the problem were solved exactly, then the solution of the Schrédinger equation could be sought; e.g., by
using the Ritz method (p. 238). Then we have to decide what kind of basis set to use. We could use two auxiliary
complete basis sets: one that depended on the electronic coordinates {Jr;\- (r)}, and another that depended on the
nuclear coordinates {¢(R)}. The complete basis set for the Hilbert space of our system could be constructed
as a Cartesian product {/x(r)} x {¢;(R)}: i.e., all possible product-like functions Vi (r)¢;(R). Thus, the wave
function could be expanded in a series, as follows:

-
VR =) i ®) =Y @) | Y cubi(R)
ki k i

N
=) U fi®),
k

where fR(R) =73 ; c11¢1(R) stands for a to-be-sou ght coefficient depending on R (rovibrational function). If we
were dealing with complete sets, then both Yy and fi should not depend on anything else, since a sufficiently
long expansion of the terms ¥ (r)¢y (R) would be suitable to describe all possible distributions of the electrons
and the nuclei.

However, we are unable to manage the complete sets. Instead, we are able to take only a few terms in this
expansion. We would like them to describe the molecule reasonably well, and at the same time to have only one
such term. If so, it would be reasonable to introduce a parametric dependence of the function Wy (r) on the position
of the nuclei, which in our case of a diatomic molecule means the internuclear distance. This is equivalent to
telling someone how the electrons behave when the internuclear distances have some specific values, and how
they behave when the distances change.
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Ho(R)Y(r; R) = EX(R)Y(r; R) (6.8)

and depend parametrically” on the internuclear distance R, and fi(R) are yet unknown rovi-
brational functions (describing the rotations and vibrations of the molecule).

Averaging Over Electronic Coordinates

First, let us write down the Schridinger equation with the Hamiltonian [Eq. (6.6)] and the wave
function, as in Eq. (6.7):

[.

N N
(Ho+B)Y 91 (riR) i®) =E Y 1 (r: R) filR). (6.9)
) i

Let us multiply both sides by " (r; R) and then integrate over the electronic coordinates r
(which will be stressed by the subscript “e”):

N N
> (o + Bt fl) = EY Wl fi (6.10)
l }

On the right side of Eq. (6.10), we profit from the orthonormalization condition (Y |y}, =
dk1. and on the left side. we recall that i is an eigenfunction of F:’g:

2
EQfe+ ) (wlf' v fi) = Efi. ©11)
I

Now, let us focus on the expression 2l W f) = —51—2 Ar( i)+ A" (11 f1), which we have

H
in the integrand in Eq. (6.11). Let us concentrate on the first of these terms:

h? h2 h2
— Q—ARW)‘fﬁ) = ——VrVrWi fi) = ——VrlYiVr i + (Vr{1) fi]
i 21 21
K2
= —Z—#IVRVfIVRfI + Y1 AR fi + (ArYD) fi + VRV VR fi]
= —ziﬂ_:z (Vevr) (Ve fi) + VAR fi + (DY) fil- (6.12)

9 For each value of R, we have a different formula for Ve
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After inserting the result into (wklﬁ’(m f;)) and recalling Eq. (6.5), we have

h? h?
(Bt fi) = (—i) Vel Vaya) Ve fi + Gl (—ZI—H) Arfi

h2 -
(ml( '; )Amlf:) fi+ (le”w)g fi

12 i
= (1—éu) ( p ) (Y| VRY1) . VR i — (SHZARfI + Hy, fi, (6.13)

with
Hj, = (i.fkaH 'M)F-
At that point, we obtain the following form of Eq. (6.11):
2

A 12 h
EQ fi + Z [(1 — 8u1) (—i) (Yl VRY) e VR II — 5&12%_ AR fi + H;f.,v.f!] = Efg.
7

Here, we have profited from the equality (Y| Vg ), = 0, which follows from the differentiation
of the normalization condition'" for the function ;.

Non-Adiabatic Nuclear Motion

Grouping all the terms with f; on the left side, we obtain a set of A equations:

5
—ﬁa + EJ(R) 4+ HL (R) —E =—) © 6.14
5 R k Fek fk = Z ki fh (6.14)
H 1K)
for k =1, 2, .. N with the non-adiabatic coupling operators

f—Z
O = ~ (V| VRY1) . Vi + Hj. (6.15)

Note that the operator H], depends on the length of the vector R, but not on its direction."'

10 We assume that the phase of the wave function ¢ (; R) does notdependon R;ie., ¢ (r; R) = wﬁ (r; R) exp (: b),

where v, is a real Tunction and ¢ # ¢ (R). This immediately gives (x| VR ¥k Ye = Y| VRVK),» W ’ 01,&/\) q’f’

from ditferentiating the normalization condition. Indeed, the normalization condition: f ':f’k dre, = llencZA

ngwkdrg—o or 2 [y Vgyydre = 0. WWWJ—W&VMHC——/ 5 5 U‘/L 'A%
1 This follows from the fact that we have in A’ [see Eq. (6.5)] the products of nablas (i.e., scalar products). The

scalar products do not change upon rotation because both vectors involved rotate in the same way and the angle

between them does not change.
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Equation (6.14) is equivalent to the Schrodinger equation.

Equations (6.14) and (6.15) have been derived under the assumption that i of Eq. (6.7)
satisfies Eq. (6.8). If instead of ¢ (r; R), we use a (generally non-orthogonal) complete set
{¥x(@r; B} in Eq. (6.7), Eqgs. (6.14) and (6.15) would change to

12 _ v
[_Q_,UAR + Ex(R) + H{,(R) — E] Jie = — Z Ou fi, (6.16)
1(#k)

fork =1, 2, ...\ with the non-adiabatic coupling operators

B e = o h2
Ou = S (V| Vryn), Vi + Hjy + (ln), (—EAR) (6.17)

and Ex(R) = (1}?1 | f;’m/}k) . Functions v (r; R) may be chosen as the wave functions with some
(&

chemical significance.

6.3 Adiabatic Approximation

If the curves EE(R) for different k are well separated in the energy scale, we may expect that
the coupling between them is small, and therefore all @ for kK # [ may be set equal to zero.
This 1s called the adiabatic approximation. In this approximation, we obtain from Eq. (6.14):

h?
[_;_MAR + E;(R) + Hl:k(R)] fi(R) = Efi(R), (6.18)

where the diagonal correction H;, (R) is usually very small compared to EE(R).
In the adiabatic approximation. the wave function is approximated by a product

W~ Y (r; R) fr(R) (6.19)

The function fi.(R) depends explicitly not only on R, but also on the direction of vector R,
and therefore it will describe future vibrations of the molecule (changes of R), as well as its
rotations (changes of the direction of R).

A Simple Analogy

Let us pause a moment to get a sense of the adiabatic approximation.
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To some extent, the situation resembles an attempt to describe a tourist (an electron) and
the Alps (nuclei). Not only the tourist moves, but also the Alps, as has been quite convincingly
proved by geologists.'? The probability of encountering the tourist may be described by a “wave
function” computed for a fixed position of the mountains (shown by a map bought in a shop).
This 1s a very good approximation because when the tourist wanders over hundreds of miles, the
beloved Alps move a tiny distance, so the map seems to be perfect all the time. On the other hand.
the probability of having the Alps in a given configuration is described by the geologists’ “wave
function” f, saying e.g. what is the probability that the distance between the Matterhorn and the
Jungfrau is equal to R. When the tourist revisits the Alps after a period of time (say, a few million
years), the mountains will have changed (the new map bought in the shop will reflect this fact).
The probability of finding the tourist may again be computed from the new wave function, which
is valid for the new configuration of the mountains (a parametric dependence). Therefore, the
probability of finding the tourist in the spot indicated by the vector r at a given configuration of
the mountains R can be approximated by a product'” of the probability of finding the mountains
at this configuration | fi(R)|?dR and the probability |y (r; R)|?dr of finding the tourist in
the position shown by the vector r, when the mountains have this particular configuration R.
In the case of our molecule. this means the adiabatic approximation (a product-like form),
Eq. (6.19).

This parallel fails in one important way: the Alps do not move in the potential created by
tourists, the dominant geological processes are tourist-independent. Contrary to this, as we will
soon see, nuclear motion is dictated by the electrons through the potential averaged over the
electronic motion.

6.4 Born-Oppenheimer Approximation

In the adiabatic approximation, H,’:_k = f Vi H "Ydz, represents a small correction to E}\,’( R).
Neglecting this correction results in the Born-Oppenheimer approximation:

12 The continental plates collide like billiard balls in a kind of quasi-periodic oscillation. During the current oscillation,
the India plate. which moved at a record speed of about 20 cm a year. hit the Euroasiatic plate. This is why the
Himalayan mountains are so beautiful. The collision continues, and the Himalayas will be even more beautiful
someday. Europe was hit from the south by a few plates moving at only about 4 cm a year, and this is why Alps
are lower than Himalayas. While visiting the Atlantic coast of Maine, I wondered that the color of the rocks was
very similar to those I remembered from Brittany, in France. That was it! Once upon a time, the two coasts made a
common continent. Later, we had to rediscover America. The Wegener theory of continental plate tectonics, when
created in 1911, was viewed as absurd, although the mountain ranges suggested that some plates were colliding.

13 This is an approximation because in the non-adiabatic (i.e., fully correct) approach, the total wave function is a
superposition of many such products. corresponding to various electronic and rovibrational wave functions.
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Note that in the Born-Oppenheimer approximation, the potential energy for the motion
of the nuclei E}C}(R) is independent of the mass of the nuclei, whereas in the adiabatic
approximation, the potential energy EE(R) + Hj, (R) depends on the mass.
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Julius Robert Oppenheimer (1904-1967), American
physicist and professor at the University of Califor-
nia in Berkeley, the California Institute of Technology
in Pasadena, and the Institute for Advanced Study in
Princeton. From 1943 to 1945, Oppenheimer headed
the Manhattan Project (atomic bomb).

From John Slater’s autobiography:

“Robert Oppenheimer was a very brilliant physics
undergraduate at Harvard during the 1920s, the period
when | was there on the facully, and we all recognized
that he was a person of very unusual attainments.
Rather than going on for his graduate work at Har-  developing what has been known as the Bomn-
vard, he went to Germany, and worked with Born, Oppenheimer approximation.”

-
-

-
-
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-
-
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. « . And a Certain Superiority of Theory Over Experiment

In experiments, every chemist finds his molecule confined close to a minimum of the electronic
energy hypersurface (most often of the ground state). A powerful theory might be able to predict
the results of experiments even for the nuclear configurations that are far from those that are
accessible for current experiments. This is the case with quantum mechanics, which is able to
describe in detail what would happen to the clectronic structure'?, if the nuclear configuration
were very strange; e.g., the internuclear distances were close to zero, if not exactly zero. Within
the Born-Oppenheimer approximation. the theoretician is free to put the nuclei wherever he
wishes. This means that we are able to discuss and then just to test “what would be if;” even if
this “if” were crazy. For example, some small internuclear distances are achievable at extremely
large pressures. At such pressures, some additional difficult experiments have to be performed
to tell us about the structure and processes. A theoretician just sets the small distances and
makes a computer run. This is really exceptional: we may set some conditions that are out of
reach of experiments (even very expensive ones), and we are able to tell with confidence and at
low cost what will be.

14 we just do not have any reason to doubt it.
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6.5 Vibrations of a Rotating Molecule

Our next step will be an attempt to separate rotations and oscillations within the adiabatic
approximation. To this end, the function f;(R) = fi(R, 6, ¢) will be proposed as a product of
a function Y which will account for rotations (depending on 6, ¢). and a certain function X‘( R)
describing the oscillations i.c., dependent on R

Xk (R)

fk®R) =Y (6, $) (6.20)

No additional approximation is introduced in this way. We say only that the isolated molecule
vibrates independently of whether it is oriented toward the Capricorn or Taurus constellations
(“space is isotropic™).'” The function xx(R) is yet unknown, and we are going to search for it;
therefore, dividing by R in (6.20) is meaningless.'®

Now, we will try to separate the variables 6, ¢ from the variable R in Eq. (6.18); i.e., to obtain
two separate equations for them. First, let us define the quantity

Ur(R) = EX(R) + H[,(R). (6.21)

After inserting the Laplacian (in spherical coordinates; see Appendix H available at booksite.
elsevier.com/978-0-444-59436-5 on p. €91) and the product [Eq. (6.20)] into Eq. (6.18), we
obtain the following series of transformations:

w? 18R28+ 13 a+ 1 9 +UR) | P = By X
2 \R2orY ar T Resine 96 %36 T RZsin20 962 k R_ R’

B (Y& x |1 a 98Y L X 1 8%
————t ———5————8smbt— —————
" 2u \R3R?2 " R RZsin6 30 30 ' R R2sin%6 3¢?

(1% |1 1 9 Y 1 3%y
o iy = g — e U(R) =E
21 (Xk dR? i ¥ (R2 sin @ 96 a6 3 R2sin’ 6 3¢2)) +UE)

R% 3%y, 21 2 2 1/ 1 8 ay 1 3%y
—| —=Z&5 ) + S5 U (RR ER? = — Rl Tl LIS O WS,
(Xk 6R2) + R — (sinﬁ T e a.:p?)

YU R——EY—
+ YUr(R) R

The result is fascinating. The left side depends on R only. and the right side only on 6 and ¢.
Both sides ecqual each other independently of the values of the variables. This can only happen
if each side is equal to a constant (1), the same for each. Therefore, we have

R2 3% xi
Ak IR2

) + 2‘“‘0 (R)R? — i—‘[’”m?2 =2 (6.22)

151 is an assumption about “the space”, which is assumed not to be changed by the presence ol the Capricorn,
Taurus, or other constellation.

16 In the case of polyatomics, the function fj, (R) may be more complicated because some vibrations (e.g., a rotation
of the CH3 group) may contribute to the total angular momentum, which has to be conserved (this is related to
space isotropy; cf., p. 69).
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141 8 . 8y 1 9%y
| ——smb—+ ———= ] =A. (6.23)
Y (:-*.111.'5i a6 96  siné6 a¢2)

Now, we are amazed to see that Eq. (6.23) is identical (cf., p. 199) to that which appeared
as a result of the transformation of the Schrodinger equation for a rigid rotator. ¥ denoting
the corresponding wave function. As we know from p. 200, this equation has a solution only
ifA=—J(J+ 1), where J = 0,1, 2, ... Since Y stands for the rigid rotator wave function,
we now concentrate exclusively on the function yj. which describes vibrations (changes in the
length of R).

After inserting the permitted values of A into Eq. (6.22), we get

B2 (9% xx h?

—E (W) +Ur(R) xi — Exi =

Let us write this equation in the form of the eigenvalue problem for the unidimensional

" 2uR2

J(J + Dy

motion of a particle (we change the partial into the regular derivative) of mass p:

h? d?

—_— W vl (R) = Ekyy Yivi (R 6.24
25 AR2 + u) Xivd (R) = Epwg Xkvi (R) (6.24)
with potential energy (let us stress that R > 0)
?12
Vir (R) = Ug(R) + J(J + D, (6.25)
2uR

which takes the effect of centrifugal force on the vibrational motion into account. The solution
Xr» as well as the total energy Ej, have been labeled by two additional indices: the rotational
quantum number J (because the potential depends on it) and the numbering of the solutions
v=0,12,...

The solutions of Eq. (6.24) describe the vibrations of the nuclei. The function Vi =
E,?(R) + H;: R+ I+ K2/ (Z.u.RZ) plays the role of the potential energy curve for
the motion of the nuclei.

The above equation. and therefore also

the very notion of the potential energy curve for the motion of the nuclei, appears only
after the adiabatic (the product-like wave function, and H, preserved) or the Born-Oppen-
heimer (the product-like wave function, but H;, removed) approximation is applied. Only
in the Born-Oppenheimer approximation is the potential energy Uy (R) mass-independent;
e.g., the same for isotopomers Hy, HD, and D».
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If Vi7(R) were a parabola (as it is for the harmonic oscillator), the system would never
acquire the energy corresponding to the bottom of the parabola because the harmonic oscillator
energy levels (cf., p. 190) correspond to higher energy. The same pertains to V;; of a more
complex shape.

6.5.1 One More Analogy

The fact that the electronic energy EE(R) plays the role of the potential energy for vibrations not
only represents the result of rather complex derivations, but is also natural and understandable.
The nuclei keep together thanks to the electronic “glue” (we will come back to this in Chapter
8). Let us imagine two metallic balls (nuclei) in a block of transparent gum (electronic cloud),
as shown in Fig. 6.1.

If we were interested in the motion of the balls, we would have to take the potential energy
as well as the kinetic energy into account. The potential energy would depend on the distance
R between the balls, in the same way as the gum’s elastic energy depends on the stretching
or squeezing the gum to produce a distance between the balls equal to R. Thus, the potential
energy for the motion of the balls (nuclei) has to be the potential energy of the gum (electronic
energy).'’

Fig. 6.1. Two metallic balls in a block of gum. How will they vibrate? This will be dictated by the elastic properties of the gum.

17 The adiabatic approximation is of more general importance than the separation of the electronic and nuclear
motions. Its essence pertains to the problem of two coexisting time scales in some phenomena: fast and slow
scales. The examples below indicate that we have to do with an important and general philosophical approach:

= InChapter 14 on chemical reactions, we will consider slow motion along a single coordinate, and fast motions
along other coordinates (in the configurational space of the nuclei). “Vibrationally adiabatic” approximation
will also be introduced, and the slow motion will proceed in the potential energy averaged over fast motions
and calculated at each fixed value of the slow coordinate.

*=  Similar reasoning was behind vibrational analysis in systems with hydrogen bonds [Y. Marechal
and A. Witkowski, Theor. Chim. Acta, 9, 116 (1967).] The authors selected a slow intermolecular motion
proceeding in the potential energy averaged over fast intramolecular motions.
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This situation corresponds to a non-rotating system. If we admit rotation, we would have to
take the effect of centrifugal force on the potential energy (or elastic properties) of the gum into
account. This effect is analogous to the second term in Eq. (6.25) for Vi j(R).

6.5.2 What Vibrates, What Rotates?

One may say that, as a result of averaging over electron coordinates, the electrons disappeared
from the theory. The only effect of their presence are numbers: the potential energy term Ui (R)
of Eq. (6.21). Equation (6.24) says that the vibrating and rotating objects are bare nuclei, which
seems strange because they certainly move somehow with electrons. Our intuition says that
what should vibrate and rotate are atoms, not nuclei. In our example with the gum, it is evident
that the iron balls should be a bit heavier since they pull the gum with them.

Where is this effect hidden? It has to be a part of the non-adiabatic effect, and can be taken
into account within the non-adiabatic procedure described on p. 265. It looks quite strange.
Such an obvious effect'® is hidden in a theory that is hardly used in computational practice.
because of its complexity?

If the excited clectronic states are well separated from the ground electronic state &k = 0,
it turned out that onc may catch a good part of this effect for the ground statc by using the
perturbation theory (see Chapter 5). It is possible to construct'” a set of more and more advanced
approximations for calculating the rovibrational levels. All of them stem from the following
equation for the vibrational motion of the nuclei, a generalization of Eq. (6.24):

d
——————+ Wos(R) | Xous(R) = Ep, J(R), 6.26
[ R? 4R 274, (R) dR + Wou( )] ovs (R) = Eous xovs (R) (6.26)
where the operator on the left side corresponds to the kinetic energy of vibration given in
Eq. (6.24), but this time, instead of the constant reduced mass p of the nuclei, we have the mass
denoted as p) (R) that is R-dependent. The potential energy

J(J+ 1)

_ 0 !
Wos(R) = Ej(R) + Hyy(R) + 2R

+ 8&na(R) (6.27)
also resembles the potential energy of Eq. (6.25), but the reduced mass of the nuclei p in the
centrifugal energy, Eq. (6.25), is replaced now by a function of R denoted by y¢, (R). Visibly
the nuclei arc “dressed” by clectrons, and this dressing not only is R-dependent, which is
understandable, but also depends on what the nuclei are doing (vibration”’ or rotation). There
is also a non-adiabatic increment 8&,,,(R), which effectively takes into account the presence

18 The effect is certainly small, because the mass of the electrons that make a difference (move with the nucleus) are
about 1836 times smaller than the mass of the nucleus alone.

19 K. Pachucki and J. Komasa. J. Chem. Phys.. 129. 34102 (2008).

20 The R-dependent ;¢ was introduced by R.M. Herman and A. Asgharian. J. Chem. Phys., 45. 2433 (1966).
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Fig. 6.2. What vibrates and what rotates in the hydrogen molecule? The variable reduced masses f¢)) and y¢| correspond to the
masses of the objects in the hydrogen molecule that vibrate (1)) and rotate (m ) ). Conclusion: at large distances move atoms, at
very short move the bare nuclei.

of higher states. We do not give here the formulas for 8&,,,(R), ) and p | (they all have been
derived by Pachucki and Komasa®').
The following sequence of approximations can be designed:

* The Born-Oppenheimer approximation: ) = jy = p; Woy(R) = Eg(R) +- JZ(:;%)
» The adiabatic approximation: p = p: = p; Woy(R) = EB(R) + H(’,O(R) + Jz(i;le)

* The effective non-adiabatic approximation: pj, ;| taken as R-dependent; Wo;(R) =

EQ(R) + Hio(R) + 507 + 8&a(R).

It is interesting to see what kind of object vibrates and rotates in the hydrogen molecule. As
one can see from Fig. 6.2, y (R = o0) = pi1(R = o0) = Mp + m, while (R = 0) =
11 (R =0) = Mp, where M), stands for the mass of proton and m is the electron mass. Thus,
for large R, the hydrogen atoms vibrate and rotate, while for very small R - only bare protons
do. For finite nonzero values of R, the rotation-related effective atomic mass m_ (R) changes
monotonically, while the vibration-related effective atomic mass m|;(R) undergoes peculiar
changes exhibiting a maximum mass at about 4 a.u. (a bit larger than M, +m) and additionally,
an impressive platcau of about M), + %m just before going to m;; = M, at R = 0. This is what
equations give: however, we have problems with rationalizing such things.

21 Equation (6.27) may be treated as the most general definition of the potential energy curve for the motion of the
nuclei.
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The approach reported is able to produce the non-adiabatic corrections to all rovibrational

levels corresponding to the ground electronic state.””

6.5.3 The Fundamental Character of the Adiabatic Approximation—PES

In the case of a polyatomic molecule with N atoms (N > 2), Vi; depends on 3N — 6 variables
determining the configuration of the nuclei. The function Vi j (R) therefore represents a surface
in (3N — 5)-dimensional space (a hypersurface). This potential energy (hyper)surface Vi ;(R),
or PES, for the motion of the nuclei represents one of the most important ideas in chemistry.

This concept makes possible contact with what chemists call the spatial “structure” of the
molecule, identified with its nuclear configuration corresponding to the minimum of the
PES for the electronic ground state. It is only because of the adiabatic approximation, that
we may imagine the 3-D shape of a molecule as a configuration of its nuclei bound by an
electronic cloud (see Fig. 6.3). This object moves and rotates in space, and in addition, the
nuclei vibrate about their equilibrium positions with respect to other nuclei (which may be
visualized as a rotation-like motion close to the minimum of an energy valley).

Without the adiabatic approximation, questions about the molecular 3-D structure of the
benzene molecule could only be answered in a very enigmatic way. For example:

* The molecule does not have any particular 3-D shape.

* The motion of the electrons and nuclei is very complicated.

» Correlations of motion of all the particles exist (clectron-clectron, nucleus-nucleus, electron-
nucleus).

* These correlations are in general very difficult to elucidate.

Identical answers would be given if we were to ask about the structure of the DNA molecule.
Obviously. something is going wrong, and perhaps we should expect more help from theory.

For the benzene molecule, we could answer questions like: What is the mean value of the
carbon-carbon, carbon-proton, proton-proton, electron-electron, electron-proton, and electron-
carbon distances in the benzene molecule in its ground and excited states? Note that because all
identical particles are indistinguishable, the carbon-proton distance pertains to any carbon and
any proton, and so on. To discover that the benzene molecule is essentially a planar hexagonal
object would be very difficult. What could we say about a protein? A pile of paper with such
numbers would give us the true (though non-relativistic) picture of the benzene molecule, but
it would be useless. just as a map of the world with 1:1 scale would be useless for a tourist.
It is just too exact. If we relied on this, progress in the investigation of the molecular world

221t is worth noting that for H; and its lowest rovibrational level (to cite one example), making ;. R-dependent
[i.e., using s¢|| and 1.1 and neglecting 64 (R)] gives 84% of the total non-adiabatic effect, while neglecting this
R-dependence [i.e., putting j¢j| = j| = p and taking 8&,4(R) into account gives 15%. These two effects seem
to be quite independent.
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Fig. 6.3. A 3-D model (called the “structure™) of a molecule allows us to focus attention on spatial and temporal relations that
are similar to those we know from the macroscopic world. Although the concept of “spatial structure” may ocecasionally fail, in
virtually all cases in chemistry and physics, we use a 3-D molecular model that resembles what is shown here for a particular
molecule (using a 2-D projection of the 3-D model). There are “balls” and “connecting sticks.” The balls represent atoms (of
various sizes, and the size characterizes the correspending element), the sticks of different length are supposed to represent what
are called “chemical bonds.” What should be taken seriously, and what shouldn’t be? First, the scale. The real molecule is about
100000000 times smaller than the picture here. Second, the motion. This static model shows a kind of averaging over all the
snapshots of the real vibrating atoms. In Chapters 8 and 11. we will see that indeed the atoms of which the molecule is composed
keep together because of a pattern of interatomic chemical bonds (which characterizes the electronic state of the molecule) that to
some extent resemble sticks. An atom in a molecule is never spherically symmetric (cf., Chapter 11), but can be approximated by
its spherical core (“ball”). The particular molecule shown here has two tetraazaanulene macrocycles that coordinate two NiZt jons
(the largest spheres). The macrocycles are held together by two —(CHz )4 — molecular links. Note that any atom of a given type
binds a certain number of its neighbors. The most important message is: if such structural information offered by the 3-D molecular
model were not available, it would not be possible to design and carry out the complex synthesis of the molecule. Courtesy of
Professor B. Korvbur-Daszkiewicz.

would more or less stop. A radical approach in science, even if more rigorous, is very often
less fruitful or fertile. Science needs models, simpler than reality but capturing the essence of
it, which direct human thought toward much more fertile regions.

The adiabatic approximation offers a simple 3-D model of a molecule—an extremely useful
concept with great interpretative potential.

In later chapters of this book, this model will gradually be enriched by introducing the
notion of chemical bonds between some atoms, angles between consecutive chemical bonds,
electronic lone pairs. electronic pairs that form the chemical bonds. etc. Such a model inspires
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our imagination (. . . sometimes too much).” This is the foundation of all chemistry, all organic
syntheses, conformational analysis, most of spectroscopy, etc. Without this beautiful model,
progress in chemistry would be extremely difficult.

6.6 Basic Principles of Electronic, Vibrational, and Rotational
Spectroscopy

6.6.1 Vibrational Structure

Equation (6.24) represents the basis of molecular spectroscopy and involves changing the molec-
ular electronic, vibrational, or rotational state of a diatomic molecule. Fig. 6.4 shows an exam-
ple how the curves Ui (R) [also EE(R)I may appear for three electronic states k = 0,1, 2 of a
diatomic molecule. Two of these curves (k = 0, 2) have a typical for bonding states “hook-like”
shape. The third (k = 1) is also typical, but for repulsive electronic states.

It was assumed in Fig. 6.4 that J = 0 and therefore Vi ;(R) = Ui (R). Next, Eq. (6.24) was
solved for Up(R) and a series of solutions xr,s = xov0 Was found: xooo, xo10. X020, - . . With
energies Eoon, Eo10, Eoo, - - . , tespectively. Then, in a similar way, for k = 2, one has obtained

'
Vir=o(®)

R
Fig. 6.4. The curves V y(R) for J = 0 [Vip(R) = Uy (R)] for the electronic states & = 0, 1, 2 of a diatomic molecule (scheme).
The energy levels Ey, y for J = 0 corresponding to these curves are also shown. The electronic state & = 0 has four, k = 1 has
zero, and k = 2 has five vibrational energy levels.

23 We always have to remember that the useful model represents nothing more than a kind of pictorial representation
of a more complex and unknown reality.
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the series of solutions: x200. X210. X220. - . . Withthe corresponding energies Eogo. E210. E220. - - -
This means that these two electronic levels (K = 0, 2) have a vibrational structure (v =
0,1, 2, ...), the corresponding vibrational levels are shown in Fig. 6.4. Any attempt to find the
vibrational levels for the electronic state k = 1 would fail.

The pattern of the vibrational levels looks similar to those for the Morse oscillator (p. 192).
The low levels are nearly equidistant. reminding us of the results for the harmonic oscillator. The
corresponding wave functions also resemble those for the harmonic oscillator. Higher-energy
vibrational levels are getting closer and closer, as for the Morse potential. This is a consequence
of the anharmonicity of the potential-we are just approaching the dissociation limit where the
Uy (R) curves differ qualitatively from the harmonic potential.

6.6.2 Rotational Structure

‘What would happen if we took J = | instead of J = 07 This corresponds to the potential energy
curves Vi (R = U (R)+J(J + ])h.z/(Z;,LRz), whichin ourcaseis Vi (R) = Up(R)+1(1 +
1)h? / (2;11?2) = Up(R) + h? / (,uRz) for k = 0, 1. 2. The new curves therefore represent the
old curves plus the term h?/(;uR?), which is the same for all the curves. This corresponds
to a small modification of the curves for large R and a larger modification for small R (see
Fig. 6.5). The potential energy curves just go up a little bit on the left.”* Of course, this is why
the solution of Eq. (6.24) for these new curves will be similar to that which we had before; but
this tiny shift upward will result in a tiny shift upward of all the computed vibrational levels.
Therefore, the levels Ey,,; forv =0, 1, 2, .. . will be a little higher than the corresponding Ej.,0
forv =0,1,2, ... (this pertains to k = 0, 2, there will be no vibrational states for k = 1).
This means that each vibrational level v will have its own rotational structure corresponding to

J =0: 1,2 v

y k!(R)“
0.015]

0.010

0.005

-0.005 J
J

-0.010 J
Fig.6.5. Potential energy curves in arbitrary units corresponding to a diatomic [V}, y (R), k is the electronic state quantum number]
for the rotational quantum numbers J = (), 1, 2. One can see the bond weakening under rotational excitation.

2
1
0

24 With an accompanying small shift to the right the position of the minimum.
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Increasing J means that the potential energy curve becomes shallower™ At some lower Js
the molecule may accommodate all or part of the vibrational levels that exist for J = 0. It may
happen that after a high-energy rotational excitation (to a large J), the potential energy curve
will be so shallow that no vibrational energy level will be possible. This means that the molecule
will undergo dissociation due to the excessive centrifugal force.

Separation Between Energy Levels

For molecules other than hydrides, the separation between rotational levels (Eryj+1 — Ekvr)
is smaller by two to three orders of magnitude than the separation between vibrational levels
(Ek v+1.7 — Eryr), and the latter is smaller by one or two orders of magnitude when compared
to the separation of the electronic levels (Ej41.v.7 — Eruvr)-

This is why electronic excitation corresponds to the absorption of UV or visible light,
vibrational excitation to the absorption of infrared radiation, and rotational excitation to
the absorption of microwave radiation.

This is what is used in a microwave oven. Food (such as chicken) on a ceramic plate is
irradiated by microwaves. This causes rotational excitation of the water molecules” that are
always present in food. The “rotating” water molecules cause a transfer of kinetic energy to
protein. similar to what would happen in traditional cooking. After removing the food from the
microwave, the chicken is hot, but the plate is cool (as there is nothing to rotate in the material
that makes it up).

In practice, we always have to do with the absorption or emission spectra of a specimen
from which we are trying to deduce the relative positions of the energy levels of the molecules
involved. We may conclude that in theoretical spectra computed in the center-of-mass system,
there will be allowed and forbidden energy intervals.”’ There is no energy levels corresponding
to bound states in the forbidden intervals.”® In the allowed intervals, any region corresponds to an
clectronic state, whose levels exhibit a pattern (i.e.. clustering into vibrational series: one cluster
corresponding to v = 0, the second to v = 1, etc.). Within any cluster, we have rotational levels
corresponding to J = 0, 1, 2, .. . This follows from the fact that the distances between the levels
with different k are large, with different v are smaller, and with different J are even smaller.

23 The curve Vi 7(R) becomes shallower and the system gets less stable, but for small J, the force constant para-
doxically (the second derivative at minimum. if any) increases: i.e., the system becomes stiffer due to rotation.

Indeed, the second derivative of the rotational energy is equal to J(J 4+ 1)3—ﬁ;f > () and, if the position of the

minimum of the new curve shifted only a bit (J not too large) with respect to the position of the minimum of
Ui (R), the force constant would increase due to the rotational excitation.

26 Such rotation is somewhat hindered in the solid phase.

2TIna space-fixed coordinate system (see p. €93), we always are dealing with a continuum of states (due to transla-
tions, see p. 69).

28 The non-bound states densely fill the total energy scale above the dissociation limit of the ground state.
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6.7 Approximate Separation of Rotations and Vibrations

Vibrations cannot be exactly separated from rotations for a very simple reason. During vibra-
tions, the length R of the molecule changes, which makes the moment of inertia I = uR?
change and influences the rotation of the molecule” according to Eq. (6.25).

The scparation is feasible only when making an approximation (e.g., when assuming the
mean value of the moment of inertia instead of the moment itself). Such a mean value is close
to I = uR?, where R, stands for the position of the minimum of the potential energy Vio. So

we may decide to accept the potential [Eq. (6.25)] for the vibrations in the approximate form™":

2

2uR2’

[

Vii(R) =~ Up(R)+ J(J + 1)

Since the last term is a constant, this immediately gives the separation of the rotations from
the vibrational Eq. (6.24):

n* d?
(_EW x Uk(R)) Xiews (R) = E'Xiwy (R), (6.28)

where the constant

E”'I == Eky_’ T E?'(}I(J))
h?

2uR2

€

EI"OI(J) = J(J e ])

(6.29)

Now, we may always write the potential Uy (R) as a number Uy (R,) plus the rest labeled by
Viibr (R):
UR(R) = Uy (R!.’) + vvibr(R)- (630)

Then, it is appropriate to call Ur(R,) the electronic energy E. (k) (corresponding to the
equilibrium internuclear distance in electronic state k), while the function Vy,ip,(R) stands for
the vibrational potential satisfying V,ip-(R.) = 0. After introducing this into Eq. (6.28), we
obtain the equation for vibrations (in general, anharmonic):

h? d?
(_EW " V"”’"(R)) Xtws (R) = Evitr (0) ks (R),

where the constant Eyp, (v) = E' — E, hence (after adding the translational energy—recalling
that we have separated the center-of-mass motion), we have the final approximation:

29 Let us recall the energetic pirouette of a dancer. Her graceful movements, stretching her arms out or aligning them
along her body, immediately translate into slow or fast rotational motion.

30 This looks reasonable for small amplitude vibrations only. However, this amplitude becomes larger under rotational
excitations. Thus, in principle, R, should increase il J increases and therefore the rotational energy is lower than
shown by the formula.
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Ekv.] S Errans + Eei (k) + Evibr ('U) + Erm (J) s (631)

where the corresponding quantum numbers are given in parentheses: the electronic (k), the
vibrational (v), and the rotational (J).

6.8 Understanding the IR Spectrum: HC|

Assume that we have a diluted gas’' of HCI and we are testing its optical absorption in the
microwave region. It is worth noting that the H atom or the CI atom by itself has zero absorption
in this range of spectrum. The spectrum of the HCI molecules represents a strange sequence of
double peaks in a peculiar quasi-periodic order. This means the absorption is a direct result of
making a molecule from these atoms. We will have to deal with some relative motion of the
two interacting atoms, which will be described by molecular vibrational and rotational states
and optical transitions between them (with the electronic state staying the same).

6.8.1 Selection Rules

Not all transitions are allowed. All selection rules stem ultimately from conservation laws.

The conservation of energy law says that only a photon of energy hw that fits the difference
of energy levels can be absorbed.

This fitting is not enough, however. There also must be a coupling (oscillating with fre-
quency ) between the electromagnetic field and the system. From the theory of interaction
of matter and electromagnetic field. we know that the most important coupling term is equal
o —jt - &€ = —(ixEx + €y + [1-E2); cf. p. 97, where £ is the oscillating electric field
vector of the electromagnetic field and fi is the dipole moment operator. We will assume that
the electromagnetic wave propagates along the z-axis; therefore, £ = 0 and only ji, and
ji, will count. The quantity £ provides the necessary oscillations in time, while the absorp-
tion is measured by lc]? with ¢ = (Wilp(r, R)W) e, the coupling between the initial elec-
tronic rovibrational state Wi (r, R) = ¥ (r; R) fr(R) = ¥n—o(r; R) x1,=0(R)Yj”(6, ¢), and
the final electronic rovibrational state Wi/ (r, R) = Y—o(r; R) x(R) Yj,"?"(ﬂ, ¢). Where we
decided to be within the ground electronic state (k = k' = 0) and start from the ground

vibrational state (v = 0). the symbol (|),, denotes the integration over the coordinates

en

31 No intermolecular interaction will be assumed.
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of all the electrons (“¢”) and nuclei (“n”).”” We will integrate first within ¢ =
(k| e W) e.n over electronic coordinates: (Yo(r; R)|ia(r, R)yo(r; R))e = pgo(R) and get
c = (X,',:O(R)Yj“f(é), (f))|ﬂ00(R)X1_.f(R)Y‘??!(9, ¢))> . The quantity pge(R) is the dipole moment

of the molecule in the ground electronic state and oriented in space along R.

In case pgo(R) = 0 (also in case pgo(R) - £ = 0 for any R), there will be no absorption.
Thus, to get a nonzero absorption in rotational and vibrational (microwave or IR) spectra,
one has to do with polar molecules, at least for certain R. Therefore, all homonuclear
diatomics, although they have a rich structure of rovibrational levels, are unable to absorb
electromagnetic radiation in the microwave as well as in the IR range.

A vector in 3-D space may be defined in a Cartesian coordinate system by giving the x, y,
and z components, but also in the spherical coordinate system by giving R, 6, ¢ polar coor-
dinates. Now, let us write the dipole moment pgy(R) in spherical coordinates™: pgo(R) =

+f BT”;.{.UU(R)Y{" (6, ¢) (see p. el69) with m = +1.m = 0 is excluded because it represents
Ioo.- = 0, which is irrelevant in view of £, = 0 (there is no coupling in such a case). Thus,

e = (xu=o(RY} 6, §) oo ®x (RY ) 6, 9))

i

8 Mymyd
= \/; (Xo(R) | 1100(R) X (R)) g (YJW|Y1 vy )a,¢ ;

where at each integral we have indicated the coordinates to integrate over. Now, introducing
the equilibrium internuclear distance R, (the position of the minimum of the potential energy
curve) and the displacement Q = R — R,. as well as expanding 1.go(R) in the Taylor series:

Hoo(R) = poo(Re) + (%2

< O + ... and neglecting the higher terms denoted as +. ..

32 When describing the electronic function, we have put explicitly the position in space of the nuclei (R) instead of
the usual notation with R (which does not tell us how the nuclear axis is oriented in space).

33
4 (4
J.-_(lo) =gR —HYsz.-,(R} JTY{).
V3 V3
[ &
,u_(]'il) = n(R) ?YIJ'I-
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one obtains:

] au
c= ?H 100 (Re) (xo(R)| % (R)) g + (%) (Xo(R)|Q xv (R)) r
R=R,

x (vt , =0

8 8,&0{) , Miotl oM
o ( . )R:R,, ORIy RYR (V]I )

There is only one such wave function x,» of the harmonic oscillator, for which
(Xo(R)|Qxw(R)) g # 0: it happens only for** v/ = 1.

We obtain the sclection rule for the IR spectroscopy: itis necessary that during the vibration,
the dipole moment changes. The main effect of the IR absorption from the v = 0 state is
that the vibrational quantum number has to change from O to 1.

The integral(Y _{,” [Ylll Y}"j" ’ )0 isnonzeroonlyif’® M’ = M —m, J’ = J+1. This integral has
to do with conservation of the Eg)tal angular momentum and with the conservation of the parity
of the system. Any photon has the spin quantum number*® s = 1 (cf. p. 26), which means that
besides its energy, it carries the angular momentum: h or —h (right or left circular polarizations
of the photon. the electric field £ rotating within the xy plane). After absorption the photon
disappears, but it does not matter: the total angular momentum has to be conserved whatever
happens. Therefore, the total system: molecule+photon, before as well as after absorption, has
to have the total angular momentum with the quantum number cqual to’ |J —s|,J.J +sie..
J —1,J,J + 1. The second possibility (with J) would mean that in the IR spectroscopy, the
violation of parity occurs.”® Indeed, the parity of YJ‘;V" is equal® to (— 1)”. Therefore, the case
J' = J in view of parity of lVlJ'l would mean that this is an odd function to integrate, which
would make the integral equal to zero.*” Thus,

34 Simply, Q o (R) is proportional to the Hermite polynomial Hy; i.e., is proportional to x1 (R). Due to the orthonor-
mal character of all x,, this gives v = 1 as the only possibility.

35 The rule M’ = M — m follows from fOQH expli(—M +m + M)Pldd = 27830 p1—m-

36 With two polarizations: my = 1 or mg = —1, the polarization mg = 0 is excluded due to the zero mass.

37 We will describe this problem of quantum-mechanical adding of two angular momenta in a more general way on
p- 343.

38 The conservation of parity is violated in nature, but this effect is much too small to be seen in the analyzed
spectrum.

39 Recall the s,p,d, .. orbitals of the hydrogen atom. They correspond to ¥/ 1 =0, 1,2, ..., respectively, and they
are of even (I = 0, 2) or odd parity (I = 1).

40 This is why we do not have the peak ("missing”): v =0./J=0—-v=1,J=0.
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the selection rule for the IR and for the microwave spectroscopy reads as:
No photon absorption can happen unless AJ = +1.

6.8.2 Microwave Spectrum Gives the Internuclear Distance

The lowest energy needed to excite the system would be achieved by changing J only: the related
frequencies (for transitions that are allowed by selectionrules*': kvJ = 00J — 00(J +1), J =
0,1, 2, ...) are in the range of microwaves. From Eq. (6.29), we get the theoretical estimation
of the transition energy hv = hcv = (J + 1)(J +2)ﬁ? —JJ+ 1)2:‘—‘;5 =2(J + 1)2:7*15 =
(J + 1)2B. Using the recorded microwave spectrum, we may estimate from this formula the
equilibrium interatomic distance for HCI. For the consecutive J, we get 1.29 A, independently
of J (not too large though)*?. Thus, from the microwave spectrum of HCI, we can read the
“interatomic distance.” We may compare this distance with, say, the position of minimum of
the computed potential energy curve Up(R,) of Eq. (6.30).

6.8.3 IR Spectrum and Isotopic Effect

What about the IR region? Fig. 6.6a gives the recorded absorption.

First, why are there these strange doublets in the IR spectrum for HCI? Well, the reason is
quite trivial: two natural chlorine isotopes: 3>Cl and *’Cl, which are always present in the natural
specimen (with proportion 3:1). The H*>Cl molecule rotates (as well as oscillates) differently
than the H37Cl because of the reduced mass difference [see Eq. (6.29)]. This difference of p is
very small, since what decides in y is the small mass of the proton®”. Thus, these two molecules
will correspond to two spectra that are similar, but shifted a bit with respect to one another on
the frequency axis, the heavier isotope spectrum corresponding to a bit lower frequency.

Fig. 6.6a can be understood with the help of Eq. (6.28). which shows us a model of the
phenomena taking place. At room temperature, most of the molecules (Boltzmann law) are in
their ground electronic and vibrational states (k = 0, v = 0). IR quanta are unable to change
quantum number &, but they have sufficientenergy to change v and J quantum numbers. Fig. 6.6a
shows what in fact has been recorded. From the transition selection rules (see above), we have
Av = 1—0 = 1 and either the transitions of the kind AJ = (J + 1) — J = +1 (what is known
as the R branch, right side of the spectrum) or of the kind AJ = J —(J + 1) = —1 (the P
branch, left side).

4 For more about this, see Appendix C available at booksite.elsevier.com/978-0-444-59436-5.

42 Thjs is because the minimum of the potential energy curve Vp; shifts for large J.

B The presence of a deuterium-substituted molecule would have much more serious consequences (a larger shift
of the spectrum), because what first of all counts for the reduced mass is the light atom. And the reduced mass
controls rotation and vibration.
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Fig. 6.6. What can we learn about the HCI molecule from its IR spectrum? {a) The IR spectrum (each doublet results from two
chlorine isotopes: 39CI and 37Cl present in the specimen). (b) The central position in the spectrum (between R and P branches)
seems to be missing because the transition v = (0, J = 0 — v = 1, J = 0 is forbidden by the selection rules (as described
in the text), and its hypothetical position can be determined with high precision as the mean value of the two transitions shown:
J=0— J=1and J =1 — J=0. This allows us to compute the force constant of the HCI bond. The energy difference of
the same two quanta allows us to estimate the moment of inertia. and therefore the H...Cl distance. Note that the rotational levels
corresponding to the vibrational state v = 1 are closer to each other than those for v = (. This is due to the wider and wider well
and longer and longer equilibrium distance corresponding to the rotationally corrected potential for the motion of the nuclei.

6.8.4 IR Spectrum Gives the Internuclear Distance
The remarkable regularity of the spectrum comes from the fact that the transition energy differ-
ence (of the nearest-neighbor peak positions) in a given branch is:

» For the R branch: E.x.i;.; = hv = hvyy + (J + 1D(J + 2)2}’:; - J{J + I)Z‘HR2 =
hvo + (J +1)2B and Eoxcit,i+1 — Eexcir, g = (J+2)2B—-(J + 1)28 =2B.
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» For the P branch: Ecyci;. g = hv = hvy + J(J + I)2 R2
and Exeir, 7 — Eexcir,j—1 = J2B — (J — 1)2B = 2B.

- (J - 1)] hvy + J2B

R2_

From the known distance 2B, we can compute the estimation for the equilibrium distance
R.. We see that they are indeed quite equidistant in the spectrum for the R branch and for the
P branch separately, but there is a small difference in the Bs for these branches. Is the theory
described wrong? No. only our oversimplified theory fails a little. The B for the P branch is a
bit larger because the mean interatomic distance gets larger for larger J (due to the centrifugal
force).

6.8.5 Why We Have a Spectrum “Envelope”

What about the overall shape of the peaks’ intensity (“the envelope”) of the R and P branches? It
looks quite strange: as if the transition from the levels withv =0, J = 2and v = 0, J = 3 had
the largest intensity. Why? The rotational levels are so close that they are significantly populated
at a given temperature. In a thermal equilibrium, the population of the levels by HCl molecules
is proportional to the degeneracy of the level number J times the Boltzmann factor [i.e., to
p(J:T)=2J+ 1 expl— M]] Let us find for which J the pIObdblI]ty p(J; T) attains

a maximum: j—? =0=2exp[— M - 2J + I)(ZHI)B exp[— J(it})B] which gives for

Jop: the equation 2 — (2J,,,; + 1)2 ka =0, 0r CJop: + 1)2 = ngT. For T = 300 K, this gives
Jopr = 2.7;1.e., between J = 2 and J = 3. It looks as this is just what we sce. We may say,
therefore, that the spectrum shown has been recorded close to room temperature.

6.8.6 Intensity of Isotopomers’ Peaks

One problem still remains. Since the isotopes *>Cl and 37C1 occur with the ratio 3:1, we might
expect a similar intensity ratio of the two spectra. Why, therefore, do we have the ratio (Fig. 6.6a)
looking as something like 4:3 (for low J)? There are two possible explanations: heavier rotator
and heavier oscillator have lower energies and their levels are more populated at nonzero tem-
peratures (however the effect is opposite), and/or this spectrum has too low a resolution, and we
are comparing the maxima, while we should be comparing the integral intensity of the peaks
(this means the area under the signal recorded). It turns out that in a higher-resolution spectra,
for the integral intensities, we indeed see the ratio 3:1.
Thus, we may say that we understand the spectrum of HCI given in Fig. 6.6a.

6.9 A Quasi-Harmonic Approximation

The detailed form of V- (R) is obtained from Ui (R) of Eq. (6.30) and therefore from the
solution of the Schrodinger Eq. (6.24) with the clamped nuclei Hamiltonian. In principle, there

4 1t is not normalized to unity. but that does not matter here.
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is no other solution but to solve Eq. (6.28) numerically. It is tempting, however, to get an idea
of what would happen if a harmonic approximation were applied; i.e., when a harmonic spring
was installed between both vibrating atoms. Such a model is very popular when discussing
molecular vibrations. There 1s a unexpected complication though: such a spring cannot exist
even in principle. Indeed, even if we constructed a spring that elongates according to Hooke’s
law, one cannot ensure the same will occur for shrinking. It is true that at the beginning, the
spring may fulfill the harmonic law for shrinking as well, but when R — 0., the two nuclei
just bump into each other and the energy goes to infinity instead of being parabolic. For the
spring to be strictly harmonic, we have to admit R < 0, which is forbidden because R means a
distance. Fig. 6.7 shows the difference between the harmonic potential and the quasi-harmonic

approximation for Eq. (6.28).
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Fig. 6.7. The difference between harmonic and quasi-harmonic approximations for a diatomic molecule. (a) The potential energy "
for the harmonic oscillator. (b) The harmonic approximation to the oscillator potential Vi, (R) for a diatomic molecule is not

realistic since al R = 0 (and at R < 0), the energy is finite, whereas it should go asymptotically to infinity when R tends to 0. (¢) A
more realistic (quasi-harmonic) approximation is as follows: the potential is harmonic up to R = (), and for negative R, it goes to
infinity. The difference between the harmonic and quasi-harmonic approximations pertains to such high energies (high oscillation

amplitudés), that it is practically of negligible importance. In cases b and c. there is arange of small amplitudes where the harmonic

approximation is applicable.
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What do we do? Well, sticking to principles is always the best choice.*> Yet, even in the case

46 The solution is quite

of the potential wall shown in Fig. 6.7¢c, we have an analytical solution.
complex, but it gets much simpler assuming %‘)i =a>v, wherev =0, 1, 2, ... stands for the
vibrational quantum number that we are going to consider, and Vi = Vyp,-(0). This means that
we limit ourselves to those vibrational states that are well below V. This is quite satisfactory
because the hypotheticammeast (even unrealistic) Vp. In

such a case, the vibrational energy is equal to E, = hv (v" + %), where the modified “quantum
number” v/ = v 4 &, with a tiny modification:

The corresponding wave functions very much resemble those of the harmonic oscillator.
except that for R < 0, they are equal to zero. The strictly harmonic approximation results in
g, = 0, and therefore, E,, = hv (v + %), see Chapter 4.

Conclusion: The quasi-harmonic approximation has almost the same result as the (less real-
istic) harmonic one.

6.10 Polyatomic Molecule
6.10.1 Kinetic Energy Expression

A similar procedure can be carried out for a polyatomic molecule.

Let us consider an SFCS (see Appendix I available at booksite.elsevier.com/978-0-444-
59436-5 on p. €93), and vector R cps indicating the center of mass of a molecule composed of
M atoms; see Fig. 6.8. Let us construct a Cartesian coordinate system (a body-fixed coordinate
system, or BFCS) with the origin in the center of mass and the axes parallel to those of the SFCS

(the third possibility in see Appendix I available at booksite.elsevier.com/978-0-444-59436-5).

In the BFCS, an atom « of mass®’ M, is indicated by the vector ry, its equilibrium position*®

by a,, and the vector of displacement is §, = ry, — a,. If the molecule were rigid and did not

rotate in the SFCS, then the velocity of the atom a wouldbe equal toV,, = % (Recpm+ry) = iEC M
(dots mean time derivatives), because the vector r,,, indicating the atom from the BFCS, would
not change at all. If, in addition, the molecule, still preserving its rigidity, rotated about its

center of mass with angular velocity @ (the vector having the direction of the rotation axis.

43 Let me stress once more that the problem appears when making the quasi-harmonic approximation, not in the real
system we have.

46, Merzbacher, Quantum mechanics, Wiley, New York, 2d edition (1970). The solution we are talking about has
to be extracted from a more general problem in this reference. The potential energy used in the reference also has
its symmetric counterpart for R < 0. Hence, the solution needed here corresponds to the antisymmetric solutions
in the more general case (only for such solutions where the wave function is equal to zero for R = 0).

47 What this mass means was discussed earlier in this chapter.

48 We assume that such a position exists. If there are several equilibrium positions, we just choose one of them.
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Fig. 6.8. SFCS and BFCS. (a) SFCS is a Cartesian coordinate system arbitrarily chosen in space (left). The origin of the BFCS is
located in the center of mass of the molecule (right). The center of mass is shown by the vector R¢ 3y from the SFCS. The nuclei of
the atoms are indicated by vectors ry,rz, r3 ... from the BFCS. Panel (b) shows what happens to the velocity of atom «, when the
system is rotating with the angular velocity given as vector w. In such a case, the atom acquires additional velocity @ x rq. Panel
(c) shows that if the molecule vibrates, then atomic positions r,, differ from the equilibrium positions a, by the displacements £, .

right-handed screw orientation, and length equal to the angular velocity in radians per second),
then the velocity of the atom « would equal® V,, = Reum + (@ x ry). However, our molecule
is not rigid; everything moves inside it (let us call these motions “vibrations””"). Note that no
restriction was made yet with respect to the displacements &, - they could be some giant internal
motions. Then, the velocity of the atom « with respect to the SFCS is

Vo = Rem + (@ x ro) + &, (6.32)

49 |@ x ry| = ewry sin@, where @ stands for the angle axis/vector ry. If the atom « is on the rotation axis, this term

vanishes (¢ = 0 or 7). In other cases, the rotation radius is equal to ry sin 6.
50 Such a “vibration” may mean an vibration of the OH bond, but also a rotation of the —ClII3 group or a large

displacement of a molecular fragment.
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When these velocities V, are inserted into the kinetic energy 7 of the molecule calculated
in the SFCS, then we get

1 1. 1 1 .
T = E;Ma (Vo) =3 (RCM)2§MQ + inga (@xra) + §§Ma (£a)

+RCM. |:(:) X (ZMara)i| +RCM' ZMaéa + ZMa (w % ra) .éa.

The first three (“diagonal”) terms have a clear interpretation. These are the kinetic energy
of the center of mass, the Kinetic energy of rotation, and the kinetic energy of vibrations. The
last three terms (“‘non-diagonal™) denote the roto-translational, vibro-translational, and vibro-
rotational couplings, respectively.

6.10.2 Quasi-Rigid Model-Simplifying by Eckart Conditions

There is a little problem with the expression for the kinetic energy: we have a redundancy in
the coordinates. Indeed, we have three coordinates for defining translation (R¢ ), three that
determine rotation (@), and on top of that M vectors r,. This is too many: six are redundant.
Using such coordinates would be very annoying because we would not be sure whether they
are consistent.

We may impose six relations among the coordinates and in this way (if they are correct) get
rid of the redundancy. The first three relations are evident because the origin of the BFCS is
simply the center of mass. Therefore,

Y Mory =0, (6.33)
o
which as we assume is also true when the atoms occupy equilibrium positions
Z Mya, = 0.
o
Hence, we obtain a useful relation
ZMQ (ra —aq) =0,
o
2 Mako =0.
[0

which, after differentiation with respect to time, becomes

Y Mk, =0. (6.34)
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If there were several sets of a,,’s (i.e., several minima of the potential energy), we would have
a problem. This is one of the reasons we need the assumption of the quasi-rigid molecule.

Inserting Eqs. (6.33) and (6.34) into the kinetic energy expression makes the roto-translational
and vibro-translational couplings vanish. Thus, we have

j 1 1 .
= E(R(M)2ZMQ + EZMQ (wxra)2+EZMa (Euc)z
—I—ZMuf (wxru) Eﬂ,

Noting that r, = a, + &, and using the relation®’ (A x B) -C = A - (B X C), we obtain
immediately

1 .. 1 1 .
e (RCM)2;MQ g ;Ma (0 xra)” + E;Ma .)
+w- Z Mgy (ao, xi;-'a) +w- Z My (Eaxéa) .

We completely get rid of the redundancy if we agree the second Eckart condition™? is intro-
duced (equivalent to three conditions for the coordinates):

> My (aax£,) =0. (6.35)

The condition means that we do not expect the internal motion to generate any angular
momentum.” This completes our final expression for the kinetic energy T of a polyatomic
quasi-rigid molecule

T = Tn'cms =+ Trot + Tr_.'ibr + TC(;J'EOH.G- (636)
The kinetic energy in an SFCS is composed of:

* Thekinetic energy of the center of mass (translational energy), Tryans = % (ii’ C M):2 Eu M,.
)2

» The rotational energy of the whole molecule, 7;,; = %ZQ M, ((d X Iy

* The kinetic energy of the internal motions (“vibrations”), Tyipr = % Ea M, (Eu) .

51 These are two ways of calculating the volume of the parallelepiped according to the formula: surface of the base
times the height.

52 Carl Eckart, professor at California Institute of Technology, contributed to the birth of quantum mechanics [e.g.,
C. Eckart, Phvs. Rev,, 28, 711 (1926)].

53 The problem is whether indeed we do not generate any momentum by displacing the nuclei from their equilibrium
positions. A flexible molecule may have quite a number of ditferent equilibrium positions (see Chapter 7). We
cannol expect all of them 1o satisfy Eq. (6.35), where one of these equilibrium positions is treated as a reference.
Eq. (6.35) means that we restrict the molecular vibrations to have only small amplitudes about a single equilibrium
position (quasi-rigid model).
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» The last term, usually very small, is known as Coriolis energy™. Tcoriolis =
-y, Mo (S o X § a)- It couples the internal motions (“vibrations™) within the molecule
with its rotation.

After the Eckart conditions are introduced, all the coordinates (i.e., the components of the
vectors Reyy, @ and all € )), can be treated as independent.

6.10.3 Approximation: Decoupling of Rotation and Vibration

Since the Coriolis term is small, in the first approximation we may decide to neglect it. Also,
when assuming small vibrational amplitudes &, which is a reasonable approximation in most
cases, we may replace r, by the corresponding equilibrium positions @, in the rotational term
of Eq. (6.35): Y, My(w x ry)? ~ > My (w % a,)?. in full analogy with Eq. (6.29). After
these two approximations have been made, the kinetic energy represents the sum of the three
independent terms (i.e., each depending on different variables)

T~ T:rmr,&' e Trw o g Tvibr (637)

with Ty & 33", My (@ x a0)?.

6.10.4 Spherical, Symmetric, and Asymmetric Tops

Equation (6.37) may serve to construct the corresponding kinetic energy operator for a
polyatomic molecule. There is no problem (see Chapter 1) with the translational term:
2 I ) i
_Tf:,TARCM: the vibrational term will be treated in Chapter 7. p. 355.
o

There is a problem with the rotational term. A rigid body (the equilibrium atomic positions
a, arc used), such as the benzenc molecule, rotates, but due to symmetry, it may have some
special axes characterizing the moments of inertia. The moment of inertia represents a tensor
of rank 3 with the following components:

> o Ma (a)z,_o, 4 a?ﬂ) Do Moay qay o Y o Mot oa: o

> . Muax pay o Yoo Mo(@Z o +aZ ) Y, Moty oz q ,
2 2

> o Muax a; o Y . Miayea; s Do Mo(a; ot )

to be computed in the BFCS (see Appendix I available at booksite.clsevier.com/
978-0-444-59436-5 on p. €93). The diagonalization of the matrix (see Appendix K available at
booksite.elsevier.com/978-0-444-59436-5 on p. €103) corresponds to a certain rotation of the
BFCS to a coordinate system rotating with the molecule (RMCS), and gives as the eigenvalues
Iy, Iyy, Ipz.

54 Gaspard Gustav de Coriolis (1792 — 1843), was a French engineer and mathematician and director of the Ecole
Polytechnique in Paris. In 1835, Coriolis introduced the notion of work, the equivalence of work and energy, and
also a coupling of rotation and vibration.
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When Iy, = Iy, = I.-, the rotating body is called a spherical rotator or a spherical top
(example: methane molecule); when I, = I, # I.., itis called a symmetric top (exam-
ples: benzene, ammonia molecules); when I, # I,, # I, then the top is asymmetric
(example: water molecule).

Fig. 6.9 gives four classes of the rotators (tops).
Then, the classical expression for the kinetic energy of rotation takes the form™

2 J2 12

_ZM wxaa) (”w —I—I“w +I-~w)— +2I)l _|_2; i (6.38)
Ly x yy zz

@) k\\\(.
~

(b)

Fig. 6.9. Examples of four classes of tops (rotators). The numbers Iy, Iyy, I-; represent the eigenvalues of the tensor of inertia
computed in a BECS. There are four possibilities: (a) a linear rotator (Iyy = Iyy =0, I-z # 0); e.g., a diatomic or CO2 molecule;
(b) a spherical rotator (Iyy = Iyy = Iz:): e.g.. a sphere. a cube. a regular tetrahedron, or a methane molecule: (¢) a2 symmetric
rotator (Iyy = Iyy # I:2); e.g., a cylinder, a rectangular parallelepiped with square base, ammonia or benzene molecule; (d) an
asymmetric rotator (fyy # Iy # I:2); e.g., a general rectangular parallelepiped, a hammer, or water molecule.

35 H. Goldstein, Classical Mechanics. 2d edition. Addison-Wesley (1980).
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where w,, @y, and o, stand for the components of @ in the RMCS, and J,, Jy, and J represent
the components of angular momentum also computed in the RMCS.”°

It is not straightforward to write down the corresponding kinetic energy operator. The reason
1s that in the above expression, we have curvilinear coordinates (because of the rotation from
BECS to RMCS’’), whereas the quantum mechanical operators were introduced only for the
Cartesian coordinates (Chapter 1, p. 18). How do we write an operator expressed in some
curvilinear coordinates g; and the corresponding momenta p;? Boris Podolsky solved this
problem,58 and the result 1s

R G () .
r'=se 1 g2G 'p, (6.39)
where p; = —i h.a%_, G represents a symmetric matrix (metric tensor) of the elements g,

defined by the square of the length element ds? = Y, > g,sdq,dgs, with g = det G and
&rs(g and all g, being in general some functions of g,).

6.10.5 Separation of Translational, Rotational, and Vibrational Motions

Equation (6.39) represents the kinetic energy operator. To obtain the corresponding Hamiltonian,
we have to add to this energy the potential energy for the motion of the nuclei. Uy, where k labels
the electronic state. The last energy depends uniquely on the variables &, that describe atomic
vibrations and corresponds to the electronic energy U (R) of Eq. (6.30), except that instead of
the variable R, which pertains to the oscillation, we have the components of the vectors &,,.
Then, in full analogy with Eq. (6.30), we may write

Ui(§1.85. .. .8)) = Ur(0,0,...0) + Vi vinr(§1. 85, .. .E ),

where the number Ui (0, 0, ...0) = E, (k) may be called the electronic energy in state k, and
Viewivr (0,0, ...0) = 0.

Since (after the approximations are made) the translational. rotational. and vibrational (inter-
nal motion) operators depend on their own variables, after separation the total wave function
represents a product of three eigenfunctions (translational, rotational, and vibrational) and the
total energy is the sum of the translational, rotational, and vibrational energies [fully analogous
with Eq. (6.31)]:

36 We recall from classical mechanics that an expression for rotational motion results from the corresponding one
for translational motion by replacing mass by moment of inertia, momentum by angular momentum, and velocity
by angular velocity. Therefore, the middle part of the above formula for kinetic energy represents an analog of

2 . 22
5~ and the last part is an analog of 5.

57 The rotation is carried out by performing three successive rotations by what are known as Euler angles. For details,
see Fig. 14.5. as well as R.N. Zare. Angular Momentum. Wiley, New York (1988), p. 78.
58 . Podolsky, Phvs. Rev., 32, 812 (1928).
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E ~ Efrm:s + Efl (k) mfr Erof(J) + E‘i.!ihr (UI U2, ... U_'*iM—ﬁ)- (640)

where k denotes the electronic state, J the rotational quantum number, and v; are the vibrational
quantum numbers that describe the vibrational excitations (in Chapter 7, we will see a harmonic
approximation for these oscillations).

6.11 Types of States
6.11.1 Repulsive Potential

If we try to solve Eq. (6.28) for vibrations with a repulsive potential. we would not find any
solution of class Q. Among continuous, but non-square-integrable, functions, we would find an
infinite number of eigenfunctions, and the corresponding eigenvalues would form a continuum,
Fig. 6.10a. These eigenvalues reflect the fact that the system has dissociated and its dissociation
products may have any Kinctic encrgy larger than the dissociation limit (i.c., when having
dissociated fragments with no kinetic energy). Any collision of two fragments (that correspond
to the repulsive clectronic state) will finally result in the fragments flying off. Imagine that the
two fragments are located at a distance Ry, with corresponding total encrgy E, and that the
system 1s allowed to relax according to the potential energy shown in Fig. 6.10a. The system
slides down the potential cnergy curve (i.c., the potential energy lowers) and, since the total
energy is conserved, its Kinetic energy increases accordingly. Finally, the potential energy curve
flattens, attaining E 4 + E g, where E 4 denotes the internal energy of the fragment A (a similar
thing happens for B). The final kinetic energy is equal to E — (E4 + Ep) in SFCS.

6.11.2 “Hook-like” Curves

Another typical potential energy curve is shown in Fig. 6.10b and has the shape of a hook.
Solving Eq. (6.28) for such a curve usually”” gives a series of bound states; i.e., with their wave
functions (Fig. 6.1 1) concentrated in a finite region of space and exponentially vanishing on
leaving it. Fig. 6.10 shows the three discrete energy levels found and the continuum of states
above the dissociation limit, similar to the curve in Fig. 6.10a. The continuum has, in principle,
the same origin as before (any kinetic energy of the fragments).

Thus, the overall picture is that a system may have some bound states, but above the dis-
sociation limit, it can also acquire any energy and the corresponding wave functions are non-
normalizable (non-square-integrable).

59 This applies to a sufficiently deep and wide potential energy well.
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(a)

(c)

R

Fig. 6.10. Anexample of three different electronic states. (a) Repulsive state (no vibrational states, a ball representing the nuclear
configuration will slide down resulting in dissociation); (b) three bound vibrational states (the ball will oscillate within the well);
(c) one bound vibrational state (the ball oscillates) and one metastable vibrational state (the ball oscillates for some time and then
goes to infinity, which means dissociation). A continuum of allowed states (shadowed area) with nonzero kinetic energy of the
dissociation products is above the dissociation limit.

6.11.3 Continuum

The continuum may have a quite complex structure. First of all. the number of states per energy
unit depends, in general, on the positioiromrthe energy scale where this energy unit is located.
Thus, the continuum may be characterized by the density of states (the number of states per

unit energy) as a function of energy. This may cause some confusion because the number of
continuum states in any energy section is infinite. The problem is, however, that the infinities

differ: some are “more infinite than others.” The continuum does not mean a banality of the states
involved (Fig. 6.10c¢). The continuum extends over the dissociation limit, irrespective what kind
of potential energy curve one has for finite values of R. In cases similar to that of Fig. 6.10c,
the continuum will exist independently of how wide and high the barrier is. But. the barrier
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Fig. 6.11. The bound, continuum, and resonance (metastable) states of an anharmonic oscillator. Two discrete bound states are
shown (energy levels and wave functions) in the lower part of the image. The continuum (shaded area) extends above the dissociation
limit; i.e.. the system may have any of the energies above the limit. There is one resonance state in the continuum. which corresponds
to the third level in the potential energy well of the oscillator. Within the well, the wave function is very similar to the third state
of the harmonic oscillator, but there are differences. One is that the function has some low-amplitude oscillations on the right side.
They indicate that the function is non-normalizable and that the system will dissociate sooner or later.

may be so wide that the system will have no idea about any *“extra-barrier life.” and therefore it
will have its “quasi-discrete” states with the energy h}ghcr than the dissociation limit. Yet, these )
ﬁ’gg/@the continuum (are 11011—1101‘malizai_’)]ti:).i{/i(-"%D iA
Such states are metastable and are called resonances (cf. p. 182), or encounter complexes. The < %D
system in a metastable state will sooner or later dissociate, but before this happens it may have
a quite successful long life. Fig. 6.11. shows how the metastable and stationary states differ: the
metastable ones do not vanish in infinity.
Fig. 6.12 shows what happens to the Vi ; (R) curves, if J increases. A simple model potential
Ui (R) has been chosen for this illustration. As shown in Fig. 6.12, rotational excitations may
lead to a qualitative change of the potential energy curve for the motion of the nuclei. Rotational
excitations destabilize the system, but in a specific way. First, they always introduce a barrier for
dissociation (centrifugal barrier), but despite of that, the dissociation becomes easier due to a
large “pushing up” of the well region. Second, by increasing the energy for small distances, the

states despite its similarity to bound states be

rotational excitations either make some vibrational levels disappear or may change the character
of the levels from stationary ones to metastable vibrational states (vibrational resonances in the
continuum). Third, as one can see from Fig. 6.12, the equilibrium distance increases upon
rotational excitations. r
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Fig. 6.12. A rotational excitation may lead to creating resonance states. As an illustration, a potential energy curve Vi (R) has
been chosen that resembles what we would see for two water molecules bound by the hydrogen bond. Its first component Uy (R) 1s

12 6
taken in the form of the so-called Lennard-Jones potential (cf., p. 347) Up(R) = & [( Eg,i) -2 (Egﬁ) , with the parameters

for the electronic ground state (k = 0): £g = 6 kcal/mol and Ryg = 4 a.u. and the corresponding reduced mass g¢ = 16560 a.u.,
the parameter £p stands for the well depth, and the Ryg denotes the position of the well minimum. Panels (a), (b), (¢), and (d)
correspond to Vi y (R) = Up(R) + J(J + 1)K/ 2pR?) with J = 0, 10, 15, 20, respectively. The larger J is, the shallower the
well: the rotation weakens the bond, but in a peculiar way. Due to the centrifugal lorce, the metastable resonance states appear.
These are the “normal™ vibrational states pushed up by the centrifugal energy beyond the energy of the dissociation limit. For
J = 20, already all states (including the potential resonances) belong to the continuum.

Besides the typical continuum states, which result from the fact that the dissociation prod-

ucts fly slower or faster, one may have also the continuum metastable or resonance states,
which resemble the bound states.

The human mind wants to translate such situations into simple pictures, which help us under-
stand what happens. Fig. 6.13 shows an analogy associated with astronomy: the Earth and the
Moon are in a bound state and the Earth and an asteroid are in a “primitive,” continuum-like
state, but if it happens that an asteroid went around the Earth several times and then flew away

into space, then one has to do with an analog of a metastable or resonance state (characterized
by a finite and nonzero lifetime).
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(b)

bound state

Fig. 6.13. Continuum, bound, and resonance states—an analogy involving the “states™ of the Earth and an interacting body. (a) A
“primitive” continuum state: an asteroid flies by the Earth and changes trajectory; (b) a bound state: the Moon is orbiting around
the Earth; (c) a resonance state: the asteroid was orbiting several times about the Earth and then flew away.

The Schrodinger equation Hiy = E4v is time-independent; therefore, its solutions do not
inform us about the sequence of events, but only about all the possible events with their proba-
bility amplitudes.®’ This is why the wave function for the metastable state of Fig. 6.11 exhibits
oscillations at large x: they inform us about a possibility of dissociation.

60 As Einstein said: “The only reason for time is so that evervthing does not happen at once.” The time-independent
Schrédinger equation behaves as if “everything would happen at once.”
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6.11.4 Wave Function “Measurement”

Could we know the vibrational wave function in a given electronic and rotational state? It seemed
that such a question could only be answered by quantum mechanical calculations. It turned
out,®' however. that the answer can also come from experimentation. In this experiment. three
states are involved: the electronic ground state (G), an clectronic excited state M, in particular
its vibrational state. This state will be measured, and the third clectronic state of a repulsive
character (R E P) that helps as a detector: sce Fig. 6.14.

Fig.6.14. A *measurement” of the wave function 1, or more exactly of the corresponding probability density [/, [2. A molecule
is excited from its electronic ground state G to a certain vibrational state i, in the electronic excited state M. From M, the molecule
undergoes a fluorescence transition to the state RE P. Since the RE P state is of repulsive character, the potential energy transforms
into kinetic energy (the total energy being preserved). By measuring the kinetic energy of the dissociation products, one is able to
calculate their starling potential energy (i.e.. how high they were on the RE P curve). This enables us to calculate [v,]2.

61 . Koot, PILP. Post, W.I. van der Zande, and I. Los, Zeit. Physik D, 10, 233 (1988). The experimental data pertain
to the hydrogen molecule.



302 Chapter 6

James Franck (1882-1964), German physicist and
professor at the Kaiser Wilhelm Institut far Physikali-
sche Chemie in Berlin, then at the University of Got-
tingen. Then at John Hopkins University in Baltimore,
Maryland, and from 1938 to 1949 at the University
of Chicago. Frank also participated in the Manhat-
tan Project. As a freshman at the Department of
Law at the University of Heidelberg, he made the
acquaintance of the student Max Born. Born per-
suaded him fo resign from his planned career as
a lawyer and pursue studies in chemistry, geology,
and then physics. In 1914, Franck and his colleague
Gustav Hertz used electrons to bombard mercury
atoms. The young researchers noted that electrons
lose 4.9 eV of their kinetic energy after colliding with
mercury atoms. This excess energy is then released
by emitting a UV photon. This was the first experi-
mental demonstration that atoms have the electronic
energy levels foreseen by Niels Bohr. Both scientists
eamed the Nobel Prize in 1925 for their work. The
fact that, during World War |, Franck was twice dec-
orated with the Iron Cross was the reason that he
was one of the few Jews whom the Germans toler-
ated in academia. Franck, a citizen of the Third Reich,
illegally deposited his Nobel Prize medal (with his

a —t /<7J — /v)‘_

engraved name) in the Niels lohr Institute in Copen-
hagen, Denmark. When in April 1940, the attacking
German troops marched through the streets of the
Danish capital, George de Hevesy (a future Nobel
laureate, 1943) was hiding the golden medal in a
strange and very chemical way—he dissolved it in
aqua regia. The bottle safely stayed on the shelf the
whole occupation period under the nose of the Ger-
mans. After the war, the Nobel Committee exchanged
the botile for a new medal for Franck.

We excite the molecule from the
Edward Condon (1902-1974), Ameri-
can physicist and one of the pioneers
of quantum theory in the United
States. In 1928, Condon and Gur-
ney discovered the tunneling. More
widely known is his second great
achievementi-the Franck-Condon
rule (discussed later in this chapter).
During the WW2 he participated in
the Manhattan project.

ground vibrational state of G to a
certain vibrational state v, of M
using a laser. Then the molecule
undergoes a spontancous_fluores-
cence transition to. RE P. The elec-
m&m‘l};‘s so fast that the
nuclei have no time to move (the
Franck-Condon rule). Whatever
falls (vertically, because of the Franck-Condon rule) on the RE P state as a result of fluores-
cence dissociates because this state is repulsive. The kinetic energy of the dissociation products
depends on the internuclear distance R when the fluorescence took place (i.e., on the length of

the slide the system had down the R E P). How often such an R occurs depends on IwU(R)]Z.
Therefore, investigating the Kinetic energy of the dissociation products gives |, |%.

6.12 Adiabatic, Diabatic, and Non-Adiabatic Approaches

Let us summarize the diabatic, adiabatic, and non-adiabatic concepts, as shown in Fig. 6.15.
Adiabatic case. Suppose that we have a Hamiltonian H (r; R) that depends on the electronic
coordinates r and parametrically depends on the configuration of the nuclei R. In practical
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diabatic
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non-adiabatic

adiabatic
Fig. 6.15. The iabatic, and non-adiabatic approaches to the motion of nuclei (a schematic view). (a) A state that
preserves the Chemical structure Tor any molecular geometry is called diabatic (e.g., is always ionic, or always covalent). The

energies of these states are calculated as the mean values of the clamped nuclei Hamiltonian. In the lower-energy state, the system
is represented by a white ball (say, in the ionic state); in the second, the system is represented by the black ball (say, a covalent
structure). These balls vibrate all the time in the corresponding wells. preserving the chemical structure. (b) It may happen that
two diabatic states cross. If the nuclear motion is fast, the electrons are unable to adjust and the nuclear motion may take place
on the diabatic curves (i.c., the bond pattern does not change during this motion). (c) Thc’gdﬁlyﬂggpmrh, where the diabatic
states mix (mainly at a crossing region). Each of the adiabatic states is an eigenfunction of the clamped nuclei Hamiltonian. If
the nuclear motion is slow, the electrons are able to adjust to it instantaneously and the system follows the lower adiabatic curve.
The bond pattern changes qualitatively during this motion (black ball changes to white ball: e.g.. the system undergoes a transition
from covalent to ionic). The total wave function is a product of the adiabatic electronic state and a rovibrational wave function.
(d) The non-adiabatic approach. In this particular case, three diabatic curves come into play. The total wave function is the sum of
three f\lmmﬁms are geometry-dependent, a larger ball means a larger contribution), each function is a product
of a diabatic electronic state times a rovibrational wave function. The system is shown at two geometries. Changing the nuclear
geometry. it is as if the system has moved on three diabatic surfaces at the same time. This motion is accompanied by changing the
proportions (visualized by the size of the balls) of the electronic diabatic states composing it.

4%/3%’5%355%‘ 2 dp bty J1 dihatiic o CO o

applications, most often 'F((r' R) = I%U (r; R), the electronic clamped nuclei Hamiltonian cor-
responding to Eq. (6.8) and generalized to polydtomlc molecules. The eigenfunctions v (r; R)
and the eigenvalues E;(R) of the Hamiltonian 'H(r' R) are called adiabatic (sce Fig. 6.15). If
@ H_= Hy(r; R), then in the adiabatic approximation (p. 268), the total wave function is

represented by a product
Vs ek ant <
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whele f(R)1sa 10v1blat10nal wave function that describes the rotations and vibrations of the
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Diabatic case. Imagine now a basis set Yi(r;R),i =1,2,3, ... M of some particular elec-
tronic wave functions (we will call them diabatic) that also depend parametrically on R. There

are two reasons for considering such a basis set. The first is that we are going to solve the
Schrédinger equation HW¥; = E; W; by using the Ritz method (Chapter 5) and we need a basis
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set of the expansion functions:

M

YR~ Y i@ R). (6:42)

1

The second reason pertains to chemical interpretation: usually any of the diabatic wave func-
tions are chosen as corresponding to a particular electronic distribution (chemical bond pat-
thtc\n}m and from Eq. (6.42), we may recognize what kin

dominates W. Thus, using the diabatic basis, there is a chance of gaining insight into the chem-

63

chémical structure

istry going on in the system.

The wave functions v; are in general non-orthogonal (we assume them to be normalized).
For each of them, we may compute the mean value of the energy (the integration is over the
electronic coordinates) as follows:

Ei(R) = (YiIHR)Y), (6.43)

and we will call it the diabatic energy.

The key point is that we may compare the eigenvalues and eigenfunctions of H(R); i.c., the
adiabatic states with E; and ;, respectively. If the diabatic states are chosen in a realistic way,
they are supposed to be close to the adiabatic states for most configurations R (see Figs. 6.15a—c¢).
These relations will be discussed shortly.

Non-adiabatic case. The diabatic states or the adiabatic states may be used to construct the
basis set for the motion of the electrons and nuclei in the non-adiabatic approach. Such a basis
function is taken as a product of the electronic (diabatic or adiabatic) wave function and of
a rovibrational wave function that depends on R. In a non-adiabatic approach, the total wave
function is a superposition of these product-like contributions:

Vi R) = ) ViR fiR). (6.44)
k

62 1 et us take the example of the NaCl molecule: Y1 may describe the ionic NaTC1™ distribution, while ¥, may
correspond to the covalent bond Na-Cl. The adiabatic wave function ¥ (r; R) of the NaCl molecule may be taken
as a superposition of Y1 and V9. The valence bond (VB) wave functions (VB structures) described in ( “hapter 10
may be viewed as diabatic states.

63 This is very important for chemical reactions, in which a chemical structure undergoes an abrupt change. In
chemical reactions. large changes of nuclear configuration are accompanied by motions of electrons: i.e.. large
changes in the chemical bond pattern [a qualitative change of ¢; of Eq. (6.42)]. Such a definition leaves us liberty
in the choice of diabatic states. This liberty can be substantially reduced by the following. Let us take two adiabatic
states that dissociate to ditferent products, well separated on the energy scale. However, for some reason, the two
adiabatic energies are getting closer for some finite values of R. For each value of R, we define a space spanned
by the two adiabatic functions for that R. Let us find in this space two normalized functions that maximize the
absolute value of the overlap integral with the two dissociation states. These two (usually non-orthogonal) states
may be called diabatic.
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This sum means that in the non-adiabatic approach, the motion of the system involves many
potential energy surfaces at the same time (see Fig. 6.15d).

The diabatic and the adiabatic electronic states are simply two choices of the basis set in non-
adiabatic calculations. If the sets were complete, the results would be identical. The first choice
M'tance of the chemical bond pattern and the interplay among such patterns.
The second basis set highlights the order of the eigenvalues of 7:((R) (the lower/higher-energy
adiabatic state).®*

6.13 Crossing of Potential Energy Curves for Diatomics
6.13.1 The Non-Crossing Rule

Can the adiabatic curves EE(R) cross when R changes?

To solve this problem in detail, let us limit ourselves to the simplest situation: the two-
state model (see Appendix D available at booksite.clsevier.com/978-0-444-59436-5). Let us
consider a diatomic molecule and such an internuclear distance R that the two electronic
adiabatic states® 1 (r; Ro) and Y (r; Rp) correspond to the non-degenerate (but close in the
energy scale) eigenvalues of the clamped nuclei Hamiltonian [;'U(RU):

Ho(Ro)¥i (r: Ro) = Ei(Ro)Vi(r: Ro). i =1,2.

Since f}o is Hermitian and E; # E;. we have the orthogonality of ¥y (r: Rp) and Y2 (r: Rp) :
(Yrly2) = 0.

Now, we are interested in solving
Ho(R)Y@; R) = EY/(r: R)

for R in the vicinity of Ry and ask whether it is possible for the energy eigenvalues to cross.
The eigenfunctions of Hy will be sought as linear combinations of ¢r; and y:

¥ (r; R) = ci(R)Y1(r; Ro) + c2(R)yYn2(r; Rp). (6.45)
Note that for this distance R
Ho(R) = Ho(Ro) + V(R), (6.46)

and V (R) is certainly small because R is close to Ry and V (Ry) = 0. Using the Ritz method
(Chapter 5, see Appendix D, case I1I), we arrive at two adiabatic solutions, and the corresponding

64 1 polyatomic systems, there is a serious problem with the adiabatic basis (this is why the diabatic functions
are preferred). As we will see later, the adiabatic electronic wave function is multivalued, and the corresponding
rovibrational wave function, having to compensate for this (because the total wave function must be single-valued),
also has to be multivalued.

05 These states are adiabatic only for R = Rp, bul when considering R # Ry, they may be viewed as diabatic
(because they are not the eigenfunctions for that R).
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energies read as

- — - — . 2
Ey+ E Ey—FE
EL(R)=%t\/(%) + V122, (6.47)

where V;;(R) = (7/;;|17(R)1/;j> and

Ei(R) = (i ROIFAo(RIW: 5 Ro)) = Ei(R) + Vis(R). (6.48)

The crossing of the energy curves at a given R means that £, = E_, and from this, it
follows that the expression under the square root symbol has to equal zero. Since. however.
the expression is the sum of two squares, the crossing needs two conditions to be satisfied
simultaneously:

E,—E, =0, (6.49)

[Via| = 0. (6.50)

Two conditions, and a single parameter R to change. If you adjust the parameter to fulfill the first
condition, the second one is violated, and vice versa. The crossing E = E_ may occur only
when, for some reason; e.g., because of the symmetry, the coupling constant is automatically
cqual to zero, |Vi2| = O, for all R. Then, we have only a single condition to be fulfilled,
and it can be satisfied by changing the parameter R; i.c., crossing can occur. The condition

[Vi2] = 0is equivalent to |Hy2| = (wllﬁo(R)wQ) = 0, because I—:’O(R) = ﬁo(Ro) + f/, and
(1,!/1 |f10(R0)1,b2) = 0 due to the orthogonality of both eigenfunctions of P}O(Rg).

Now we will refer to group theory (see Appendix C available at booksite.clsevier.com/
978-0-444-59436-5, p. e17). The Hamiltonian represents a fully symmetric object, whereas the
wave functions | and yr; are not necessarily fully symmetric because they may belong to other
irreducible representations of the symmetry group. Therefore, in order to make the integral
|Hy2|l = |Vi2| = 0, it is sufficient that yr; and yr» transform according to different irreducible
representations (have different symmetries).®® Thus,

the adiabatic curves cannot cross if the corresponding wave functions have the same
symmetry.

What will happen if such curves are heading for something that looks like an inevitable
crossing? Such cases are quite characteristic and look like an avoided crossing. The two curves
look as if they repel each other and avoid the crossing.

66 1 12 transforms according to the representation being the direct product of three irreducible representations: that
of vy, that of o, and that of H (the last is, however, fully symmetric, and therefore, does not count in this direct
product). In order 1o have Hyp # 0, this direct product, after decomposition into irreducible representations, has
to contain a fully symmetric irreducible representation. This, however, is possible only when yr| and 5 transform
according to the same irreducible representation.
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If two states of a diatomic molecule correspond to different symmetries, then the corre-
sponding potential energy curves can cross.

6.13.2 Simulating the Harpooning Effect in the NaCl Molecule

Our goal now is to show, in an example, what happens to adiabatic states (eigenstates of 7:{( R)),
if two diabatic energy curves (mean values of the Hamiltonian with the diabatic functions) do
cross. Although we are not aiming at an accurate description of the NaCl molecule (we prefer
simplicity and generality). we will try to construct a toy (a model) that mimics this particular
system.

The sodium atom has 11 electrons (the electronic configuration®: 1s22s22p®3s!), and the
chlorine atom contains 17 electrons (1s?2s22p®3s?3p>). The solution of the Schrodinger equa-
tion for 28 electrons is difficult. But we are not looking for trouble. Note that with NaCl, the real
star is a single electron that goes from the sodium to the chlorine atom, making Na™ and C1~ ions.
The 1ons attract each other by the Coulombic force and form the familiar ionic bond. But there
1s a problem. What is of lower energy: the two non-interacting atoms Na and Cl or the two non-
interacting ions Nat and C1~? The ionization energy of sodium is I = 495.8 kJ/mol = 0.1888
a.u., whereas the electron affinity of chlorine is only A = 349 kJ/mol = 0.1329 a.u. This
means that the NaCl molecule in its ground state dissociates into atoms, not ions.

To keep the story simple. let us limit ourselves to the single electron mentioned above.®®
First, let us define the two diabatic states (the basis set) of the system: only the 3s orbital of
Na (when the electron resides on Na; we have atoms) denoted by |3s) and the 3p orbital of Cl
(when the electron is on Cl; we have ions) |3 p). Now, what about the Hamiltonian 2 Well, a

- . O
reasonable model Hamiltonian may be taken as®”

- 1
Hr; R) = =1 [35) (31 — A13p) (3p] — = 13p) Bpl +exp (—=R) .
Indeed, the mean values of 7 in the |3s) and |3 p) states are equal to
o * 2 1 2
E\(R) =Hu = (3s[H(s)) = —1 — AS* — =% +exp (~F).

= ; 1
Ex(R) =Hyp = (3p|H(3p)} =] §% e A= = +exp(—R).

where (assuming the diabatic functions to be real) the overlap integral S = (35|3p) = (3p[3s).
First of all, this Hamiltonian gives the correct energy limits E1(R) = —I and E>(R) = —A,
when R — oo (the electron binding energy by the sodium and by the chlorine for dissocia-
tion into atoms and ions, respectively), which is already very important. The term exp (—R)

67 What these confi gurations really mean is explained in Chapter 8.

68 The other electrons in our approach will only influence the numerical values of the interaction parameters.

69 ; stands for the coordinates of the electron, and for the diatomic molecule. R replaces R.
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mimics the repulsion of the inner shells of both atoms’" and guarantees that the energies go up
(which they should) at R — 0. Note also that the E1(R) and E»(R) curves indeed mimic the
appmd(,hingp Na and Cl, and Na* and CI~, respectively, because in E5(R), there is a Coulomb
term —+, while in E1(R), such an interaction practlcally disappears for large R. All this gives
us a celtam confidence that our Hamiltonian 7 grasps the most important physical effects for
the NaCl molecule. The resulting non-diagonal element of the Hamiltonian reads as:

, 1
(35|’H(3p]> =Hip=39S [ - —A—— +cxp ]

SR

As to S, we could in principle calculate it by taking some approximate atomic orbitals,
but our goal is less ambitious than that. Let us simply set S = Rexp (—R/2). Why? Since
S = (3s]3p) = 0, if R — oo orif R — 0, and § > 0 for other values of R, then at least our
formula takes care of this. In addition, Figs. 6.16a—b show that such a formula for S also gives a
quite reasonable set of diabatic curves E{(R) and E»(R): both curves have a single minimum,
the minimum for the ionic curve is at about 5.23 a.u., close to the experimental value of 5.33
a.u., and the binding energy is 0.11 a.u. (0.13 for the adiabatic case, see below), and it is also
close to the experimental value of 0.15 a.u. Thus, our model to a reasonable extent resembles
the real NaCl molecule.

Our goal is the adiabatic energies computed using the diabatic basis chosen, Eq. (6.42). see
Appendix D available at booksite.elsevier.com/978-(0-444-59436-5 (general case) gives the
eigenvalues [ E (R) and E_(R)] and the eigenfunctions (¥4 and yy_). Figs. 6.16¢—d, show the
adiabatic compared to the diabatic curves. The avoided crossing at about 17.9 a.u. is the most
important. If the two atoms begin to approach (shown in light gray in Fig. 6.16a), the energy
does not change too much (flat energy curve), but if the ions do the same, the energy goes down
because of the long-range Coulombic attraction (dark gray). Thus, the two adiabatic curves (that
nearly coincide with the two diabatic curves, especially for large R) are going to cross each
other Figs. 6.16a-b but the two states have the same symmetry with respect to the molecular
axis (as witnessed by S # 0) and, therefore, the crossing cannot occur, as shown in Fig. 6.16d.
As a result, the two curves avoid the crossing and, as shown in Figs. 6.16c—f, the “atomic”
curve switches to the “ionic” curve and vice versa. This switching means an electron jumping
from Na to Cl and, therefore, formation of the ions Na* and C1~ (then the ions approach fast
- this is the harpooning effect, introduced to chemistry by Michael Polanyi). This jump occurs
at long distances, of the order of 9 A.

Is this jump inevitable?

0 prevents the two cores collapsing; cf. Chapter 13.
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Fig. 6.16. A simple one-electron model of electron transfer in the NaCl molecule. (a) The mean values of the Hamiltonian with
two diubutic states: one (light gray) being the 3s atomic orbital of the sodium atom (atomic curve), the second (dark gray) the 2p
atomic orbital of the chlorine atom (ionic curve). The two diabatic curves intersect. (b) A closer view of the intersection. (¢) The
two diabatic curves [gray, as in (a,b)] and the two adiabatic curves (black), the lower-energy (solid), the higher-energy (dashed).
Although the drawing looks like intersection, in fact the adiabatic curves “repel” each other, as shown in (d). (e) Each of the adiabatic
states is a linear combination of two diabatic states (atomic and ionic). The ratio ¢ /¢ of the coefficients for the lower-energy
(solid line) and higher-energy states (dashed line), ¢ is the contribution of the atomic function, ¢ — of the ionic tunction. As we
can see, the lower-energy (higher-energy) adiabatic state is definitely atomic (ionic) for R = 17.9 a.u. and definitely ionic (atomic)
for smaller R in the vicinity of the avoided crossing. () The ratio ¢; /o very close to the avoided crossing point. As we can see, at
this point, one of the adiabatic states is the sum, and the other the difference of the two diabatic states.

If the electron is able to adapt instantaneously to the position of the nuclei (slow nuclear
motion), the system follows the adiabatic curve. If the nuclear motion is very fast, the system
follows the diabatic curve and no electron transfer takes place. The electron transfer is more
probable if the gap 2|H 2| between E (R) and E_(R) is large.
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In our model, for large distances, the adiabatic are practically identical with the diabatic
states, except in the avoided crossing region (see Figs. 6.16c—d).

6.14 Polyatomic Molecules and Conical Intersection
Crossing for Polyatomics

The non-crossing rule for a diatomic molecule was based on Eq. (6.47). To achieve the cross-
ing, we had to make vanish two independent terms with only one parameter (the internuclear
distance R) to vary. It is important to note that in the casc of a polyatomic molecule, the formula
would be the same, but the number of parameters would be larger: 3M — 6 in a molecule with
M nuclei. For M = 3, therefore, onc has alrecady three such parameters. No doubt even for a
three-atomic molecule, we would be able to make the two terms equal to zero and. therefore.
achieve E = E_; 1.c., the crossing of the two diabatic hypersurfaces would occur.

Let us investigate this possibility, which, for rcasons that will become clear later, is called
conical intersection. We will approach this concept by a few steps.

Cartesian System of 3M Coordinates (O3p)

All the quantitics in Eq. (6.47) depend on n = 3M — 6 coordinates of the nuclei. These
coordinates may be chosen in many different ways; the only thing we should bother about is
that they have to determine the positions of M point objects. Just to begin, let us construct a
Cartesian system of 3M coordinates (O3p7). Let us locate (Fig. 6.17) nucleus 1 at the origin (in
this way, we climinate three degrees of freedom connected with the translation of the system),
and nucleus 2 will occupy the point xp on the x-axis; i.e., y» = z2 = 0. In this way, we have
climinated two rotations of the system. The total system may still be rotated about the x-axis.

Fig. 6.17. The Cartesian coordinate system O3y and the atoms 1, 2, and 3 with their fixed positions.
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This last possibility can be eliminated when we decide to locate the nucleus 3 in the plane x, y
(i.e., the coordinate z3 = 0).

Thus, six degrees of freedom have been eliminated from the 3M coordinates. The other nuclei
may be indicated by vectors (x;, yi, z;) fori = 4,95, ... M. As we can see, there has been a lot
of arbitrariness in these choices.’'

Cartesian System of 3M — 6 Coordinates (O3p1—6)

This choice of coordinate system may be viewed alittle differently. We may construct a Cartesian
coordinate system with the origin at atom 1 and the axes x7, x3, and y3 (see Fig. 6.17), and
xi, yi,and z; fori = 4,5, ... M. Thus, we have a Cartesian coordinate system (O3p7—¢) with
34 3(M — 3) = 3M — 6 = n axes, which may be labeled (in the sequence given above) in a
uniform way: x;,i = 1,2, ...n. A single point R = (X1, X2....X3p—6) In this n-dimensional
space determines the positions of all M nuclei of the system. If necessary, all these coordinates
may be expressed by the old ones, but it will not be because our goal is different.

Two Special Vectors in the Ozp—¢ Space

; . - - I s . :
Let us consider two functions £y — E; and Vi, of the configuration of the nuclei R =
(X1, X2, ...X3p—6)- 1.e.. with domain being the O3p; ¢ space. Now, let us construct two vectors
in O3y7_¢:

3M—6 — ==
_ _(3(E,—E
V(E, — Ep) = Z i (137}2)) ,
=i i 0
3IM—6 .
. [ 0Vi2
VVip = I = )
= Z ( dx; )0

i=l

where i; stands for the unit vector along axis x;, while the derivatives are calculated in a point
of the configurational space for which

= = N2
JESEY vt —o

i.e., where according to Eq. (6.47), one has the intersection of the adiabatic hypersurfaces.

6.14.1 Branching Space and Seam Space

We may introduce any coordinate system. We are free to do this because our object (molecule)
stays immobile, but our way of determining the nuclear coordinates changes. We will change

n By the way, if the molecule were diatomic, the third rotation need not be determined and the number of variables
wouldbeequalton =3 x 2 —5=1.



312 Chapter 6

the coordinate system in n-dimensional space once more. This new coordinate system is formed
from the old one (O3p7_6) by rotation.

The rotation will be done in such a way as to make the plzlnc determined by the two first
axes (X1 i xp) of the old coordinate system coincide with the plane determined by the two
vectors: V(E| — E2) oraz V(V12),

Let us denote the coordinates in the rotated coordinate systemby &;.i = 1,2, ..., n. The new
coordinates can, of course, be expressed as some linear combinations of the old ones, but these
details need not concern us. The most important thing is that we have the axes of the coordinates
&1 and &3, which determine the same plane as the vectors V (E 1— Eg) and VVj3. This plane
i1s known as the branching space (plane). The space of all vectors (0.0, £...8 M_ﬁ) 1s called
the seam space. The directions V (E 1 — Ez) and VVj; need not be orthogonal. although they
look this way in illustrations shown in the literature.’”

Now we are all set to define the conical intersection.

6.14.2 Conical Intersection

Why has this slightly weird coordinate system been chosen? We see from the formula [Eq. (6.47)]
for E, and E_ that & and & correspond to the fastest change of the first term and the second
term under the square-root sign, respectively.””

Any change of other coordinates (along the axes orthogonal to the plane £;&2) does not
influence the value of the square root: i.e., it does not change the difference between E
and E_ (although the values of E and E_ change).

Therefore, the hypersurface E intersects with the hypersurface E_., and their common part
(i.c., the scam space) are all those vectors of the n-dimensional space that fulfill the condi-
tion: &1 = 0 and & = 0. The intersection represents a (n — 2)—dimensional subspace of
the n-dimensional space of the nuclear (:011{'1gurations.74 When we withdraw from the point

72 See F. Bernardi, M. Olivucci, and M.A. Robb, Chem. Soc. Rev., 25, 321 (1996). The authors confirmed to me that
the angle between these vectors is often quite small. :

73 Let us take a scalar field V and calculate its value at the point rg + r, where we assume |r| < 1. From the Taylor

= Vo |[(VV),

obtain the largest absolute value of the increment of V for & = 0 and 6 = 180° i.e.. along the vector (V V)

expansion, we have with good accuracy, V (rg + r) = V(rg) + (V V) -rcosf. We

r=ry

l'=.l"U'

74 If the axes &1 and & were chosen in another way on the plane determined by the vectors V (E 1— Eg) and VVj7,
the conical intersection would be described in a similar simple way. If, however, the axes were chosen outside the
plane, it may happen that moving along more than just two axes, they would split into £ and £_. Our choice
stresses that the intersection of £ and F_ represents a (n — 2) — dimensional subspace (seam space).
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(a) E &

Fig. 6.18. Conical intersection (scheme). E represents the electronic energy as a function of coordinates of the nuclei:
£, 5, 8,&,...E53p_¢. This shows only the coordinates £ and &, which define what is known as the branching space &, &;,
while the space of all vectors (U, 0,&3,&4, ... &3p7—6) known as the seam space is not shown in panel (a) or (b). (a) Section of the
cones along & al a given point of the seam space; the equality E4 = E_ holds for the conical intersection point. (b) The vectors
V(E| — E3) and VV}2 span the branching plane (the horizontal plane; both vectors are calculated at the conical intersection). The
upper cone E4 and the lower cone E_ correspond to Eq. (6.47). and each consists of two diabatic surfaces (gray and white). (c)
Staying at the branching point (0, 0), but moving in the seam space, one remains all the time in the conical intersection, but the
cones look different (different cone openings) and the energy £4 = E_ changes (solid line).

(0,0, &3, &4, . . . E3M1—6) by changing the coordinates & and/or &2, a difference between E and
E_ appears. For small increments d&;, the changes in the energies £ and E_ are proportional
to d&; and for E, and E_ differ in sign. This means that the hypersurfaces E, and E_ as
functions of & (at & = 0 and fixed other coordinates) have the shapes shown in Fig. 6.18a. For
&, the situation is similar. but the cone may differ by its angle. From this, it follows that
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the ground and excited state hypersurfaces intersect with each other (the intersection set
represents the subspace of all vectors (0, 0, &3, &4, ..., &,)) and split when we go out of
the intersection point according to the cone rule; i.e., E and E_ change linearly when
moving in the plane &1, & from the point (0, 0).

This is called the conical intersection (sce Fig. 6.18b). The cone opening angle is in general
different for different points of the scam space (see Fig. 6.18¢).

The conical intersection plays a fundamental role in the theory of chemical reactions
(Chapter 14). The lower (ground-state) as well as the higher (excited-state) hypersurfaces are
composed of two diabatic parts, which in polyatomics correspond to different patterns of chemi-
cal bonds. This means that the system (represented by a point) when moving on the ground-state
adiabatic hypersurface toward the join of the two parts, passes near the conical intersection point,
over the energy barrier, and goes to the products. This is the essence of a chemical reaction.

6.14.3 Berry Phase

We will focus on the adiabatic wave functions close to the conical intersection. Our goal will
be to show something strange, that

when going around the conical intersection point in the configurational space, the electronic
wave function changes its phase; and after coming back to the starting point, this change
results in the opposite sign of the function.

First, let us prepare an itinerary in the configuration space around the conical intersection.
We need a parameter. which will be an angle « and will define our position during our trip

around the point. Let us introduce some abbreviations in Eq. (6.47): A = %, h = Vj3.and
define « in the following way:

sinae = A/p,

cosa = h/p,
where p =V AZ + A2,

We will move around the conical intersection within the plane given by the vectors VA
and Vh (branching plane). The conical intersection point is defined by |[VA| = |[VA| = 0.
Changing o from 0 to 27r, we have to go, at a distance p(«), once through a maximum of A (say,
in the direction of the maximum gradient Vh), and once through its minimum —# (the opposite
direction). This is ensured by cos @ = h/p. Similarly, we have a single maximum and a single
minimum of VA (as must happen when going around), when assuming that sine = A /p. We
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do not need more information about our itinerary because we are interested in how the wave
function changes after making a complete trip (i.e., 360° around the conical intersection and
returning to the starting point).

The adiabatic energies are given in Eq. (6.47) and the corresponding coefficients of the dia-
batic states are reported in Appendix D available at booksite.elsevier.com/978-0-444-59436-5
(the first, most general case):

C1 1 1
il :_[A:t A2+h2:|:tanaf:t .
c2/y h cos &

Thus,

(sin % + cos %)

. : 2

ci+ _sina+1  (sin§ +cos$)
2a

2

; : - 2 o O e @)
2.+ cos o cos? § — sin (cos § —sin %)
2 ;
: o a o o
e~ _sina—1 —(cosg—sing)”  (cosF —sin)
. - . - 2 o 2a SOy i @)
oy — cosu Cos” 5 — sin 5 (C(}:-, 5+ SIn 2)

To specify the coefficientsin ¥y = ¢y Y1+ 1yYp andy_ = 1 —Y1+c2 Y, with g and
Y2 denoting the diabatic states, we have to take the two normalization conditions into account:
(_‘%’_'_-l—c‘%‘_’_ = | (.‘%‘_ +c§‘_ = 1 and the orthogonality of ¢ and ¥ : ¢| 4¢1 —+c¢2 4c2,— = 0.
After a little algebra, we get

o o
Cl4+= \/_ Cos = +s.1115)
1 o .o
Co4 = \_/i (cos 7 — s E) ;
1 o .«
c,— = —E (COS E — Sin 5) 5
o «
03— = \/_ cos = + sin 5)
Now, letus consider the wave functions ¢ and {_ atthe angle @ and at the angle «+27 . Note
that cos “’+22” = cos(% +7) = —cos § and sin ”’+22” = sin(§ + ) = —sin §. Therefore,

both the electronic functions v and {_ have to change their signs after the journey (i.e., the
“geometric” phase or Berry phase); that is,

Vila +2n) = =4 ()

and
V(o +2n) =—¢_(a).

This is how the conical intersection is usually detected.
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Since the total wave function has to be single-valued. this means the function that describes
the motion of the nuclei (and multiplies the clectronic function) has to compensate for that
change and also undergo a change of sign.

The Berry phase has some interesting analogy to gymnastics: (see p. 902).
The Role of the Conical Intersection—Non-radiative Transitions and Photochemical Reactions

The conical intersection was underestimated for a long time. However, photochemistry demon-
strated that it happens much more frequently than expected. Laser light may excite a molecule
from its ground state to an excited electronic state (Fig. 6.19).

Let us assume that the nuclei in the electronic ground state have their optimal positions
characterized by point 1 in the configurational space (they vibrate in its neighborhood but let
us ignore the quantum nature of these vibrations ).

The change of electronic state takes place so fast that the nuclei do not have enough time
to move. Thus the positions of the nuclei in the excited state are identical to those in the
ground state (Franck-Condon rule).

Point 2 (FC) in Fig. 6.19 shows the very essence of the Franck-Condon rule—a vertical
transition. The corresponding nuclear configuration may differ quite significantly from the
nearest potential energy minimum (point 3) in the excited-state PES. In a few femtoseconds, the
system slides down from FC to the neighborhood of point 3. transforming its potential energy
into kinetic energy. Usually point 3 is separated from the conical intersection configuration 5
by a barrier with the corresponding potential energy saddle point 4 (“transition state”). Behind
the saddle point, there is usually an energy valley’® with a deep funnel ending in the conical
intersection configuration (point 5). As soon as the system overcomes the barrier at the transition
state (4), by going over it or by tunneling, it will be sucked in by the conical intersection attractor
with almost 100% probability.

The system goes through the “funnel” to the electronic ground-state hypersurface with
probability 1.

73 Electronic energy hypersurfaces represent the PES for the motion of the nuclei. In the quantum mechanical picture,
only some energies will be allowed: we will have the vibrational and rotational energy levels, as for diatomics.
The same energy levels corresponding to £ may be close in the energy scale to those of E_. Moreover, it may
happen that the vibrational wave functions of two such levels may overlap significantly in space, which means
that there is a significant probability that the system will undergo a transition from one to the other vibrational
state. In short, in the quantum mechanical picture, the motion of the system is not necessarily bound to a single
PES. but the two PESs are quite penetrable.

76 This is on the excited-state PES.
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Fig. 6.19. Non-radiative transitions explained by the photochemical funnel effect (related to the conical intersection). This shows
the electronic energy as a function of the coordinates & and £; within the branching space. a) There are two adiabatic surfaces:
the lower one corresponds to the ground electronic state (E_), and the upper one pertains the excited electronic state (E4).
Each of the surfaces is composed of two parts corresponding originally to the diabatic states: the darker one corresponds to the
electronic structure of the reactants. the lighter one corresponds to the electronic structure of the products. The spheres indicate some
particular configuration of the nuclei. Sphere 1 indicates the reactants, and the arrow symbolizes a photoexcitation by absorption
of a photon with the appropriate energy hv = fim. The excitation takes place instantaneously at a fixed reactants’ configuration
(Franck-Condon rule), but the electronic excited state corresponds already to the products, and the forces acting on the nuclei
correspond to the excited surface slope at the point labeled FC (sphere 2). The forces make the system move towards the minimum
(sphere 3). If the kinetic energy acquired is large enough to overcome the barrier (sphere 4), the system enters the funnel, inevitably
reaches the conical intersection point (sphere 5), and in a radiationless process, begins moving on the ground-state adiabatic
hypersurface. The system may end up at different products (spheres 6a and 6b), or it may go back to the configuration of the reactants
(sphere 1).

Then the system will continue its path in the ground-state PES, E_, going cither toward
products 6a or 6b, or going back to point 1 (non-reactive path).

Of course, the total energy has to be conserved. The non-radiative process described will take
place if the system finds a way to dissipate its energy; i.c., to transfer an excess of electronic
energy into the vibrational, rotational, and translational degrees of freedom of its own or neigh-
boring molecules (e.g., of the solvent).”’

77 The energy is usually distributed among the degrees of freedom in an unequal way.
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We may ask whether we will find some other conical intersections in the ground-state PES.
In general, the answer is positive. There are at least two reasons for this.

In the simplest case, the conical intersection represents the dilemma of an atom C (approach-
ing molecule AB): attach to A or attach to B?

Thus, any encounter of three atoms causes a conical intersection (we will come back to this
in Chapter 14). In each case, the important thing is a configuration of nuclei, where a small
variation may lead to distinct sets of chemical bonds. Similar “pivot points” may happen for
four, five, six, or more atoms. Thus, we will encounter not only the minima, maxima, and saddle
points. but also the conical intersection points when traveling in the ground-state PES.

The second reason is the permutational symmetry. Very often, the system contains the same
kinds of nuclei. Any exchange of the positions of such nuclei moves the point representing the
system in configuration space to some distant regions, whereas the energy does not change at all.
Therefore, any PES has to exhibit the corresponding permutational symmetry. All the details of
PES will repeat M! times for a system with M identical nuclei. This will multiply the number
of conical intersections.

More information about conical intersection will be given in Chapter 14, when we will be
equipped with the theoretical tools to describe how the electronic structure changes during
chemical reactions.

6.15 Beyond the Adiabatic Approximation
6.15.1 Vibronic Coupling

In polyatomic molecules, a diabatic state represents a product of an electronic wave function

(T) (2)

¥, and a rovibrational function’® fv s 1.e., a rovibronic state:

VAR SFARL ) ©651)

where the upper indices are related to the irreducible representations of the symmetry group
of the clamped-nuclei Hamiltonian that the functions belong to (i.e., according to which the
corresponding functions transform; see Appendix C available at booksite.elsevier.com/978-0-
444-59436-5, p. e17). If one considers the electronic and the vibrational states only’” Eq. (6.51)
denotes a vibronic state. The product function transforms according to the direct product
representation I'y x I's.

78 This function describes rotations and vibrations of the molecule.
79 For the sake of simplicity, we are skipping the rotational wave function.
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If one is interested in those solutions of the Schrédinger equation, which belong
to the irreducible representation I', the function ljf!.(rl) (r; R)_flgrﬂ (R) is useful as a basis func-
tion only if I'y x I'; contains I'. For the same reason, another basis function may be useful
w(r3) (r:R) fg “}(R), as well as other similar functions:

(@ — c,;ll,lf,-(r‘) (r:R) f '1(F2) (R) + cpzt’fg(:rﬂ) (r:R) fz( Lo ) (6.52)

If, say, coefficients c¢;j1 and c¢; are large, an effective superposition of the two vibronic
states is taking place, which is known as vibronic coupling.

We are, therefore, beyond the adiabatic approximation (which requires a single vibronic state,
a product function) and the very notion of the single potential energy hypersurface for the motion
of the nuclei becomes irrelevant. In the adiabatic approximation, the electronic wave function
is computed from Eq. (6.8) with the clamped nuclei Hamiltonian; i.e., the electronic wave
function does not depend on what the nuclei are doing, but only whele they are. In other words,
the electronic structure is determined [by finding a suitable 1,& ) (r; R) through solution of the
Schrodinger equation] at fixed position R of the nuclei. This implies that in this approximation,
the electrons always have enough time to adjust themselves to any instantaneous position of the
nuclei. One may say that in a sense, the electrons and the nuclei are perfectly correlated in their
motion: electrons follow the nuclei. Therefore,

a non-adiabatic behavior (or vibronic coupling) means a weakening of this perfect correla-
tion, which is equivalent to saying that it may happen that the electrons do not have enough
time to follow a (too-fast) motion of the nuclei.

This weakening is usually allowed by taking a lincar combination of Eq. (6.52), which may
be thought as a Kind of frustration for clectrons which vibration (“type of motion™) of the nuclei
to follow. If I'} # I's and I'y # I'4, one may say that we have to do with such an electronic

FI)

state, which resembles ‘1’.'( . when the molecule participates in a vibration of symmetry I'p

('s)

and resembles v, ~, when the molecule vibrates according to I's.
This idea may be illustrated by the following examples.

Example 1: Dipole-Bound Electron

Imagine a molecular dipole. One may think of it as having a 4+ and a — pole. We are interested
in its 4 pole, because now we consider an extra electron, which will be bound with the dipole
by the + pole-clectron attraction. Obviously, such an attraction should depend on the dipole
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Fig. 6.20. A strange situation: An electron is unable to follow the motion of the nuclei (we are beyond the adiabatic approximation,
a non-adiabatic case). (a) Some molecular dipoles with a sufficiently large dipole moment may bind an extra electron (a cloud on
the right), which in such a case is far from the dipole and is attracted by its pole. The positive pole plays a role of a pseudonucleus
for the extra electron. (b) When the dipole starts to rotate (a state with a nonzero angular momentum), the electron follows the
motion of the pole. This is, however, difficult for high angular momenta (the electron has not enough time to adapt its position right
toward the pole), and it is even harder because the centrifugal force pushes the extra electron farther away.

moment of the dipolar molecule. How strong must a point dipole be to be able to bind an

clectron? This question has been already asked, and the answer®™’

is that this happens for the
pointlike dipole moment larger than®! 1.625 D. If the dipole itself represents an electronic closed
shell molecule, the extra electron is usually very far (see Fig. 6.20a), even at distances of the
order of 50 A.

Now imagine the dipole starts to rotate (see Fig. 6.20b). At small angular momentum, the
electron supposedly does not have any problem with following the motion of the positive pole.
For larger angular momenta, the electron speeds up, its distance to the dipole increases due to
the centrifugal force, and when this happens, it gets harder and harder to follow the motion
of the positive pole. The electron does not have enough time. This means a larger and larger

non-adiabatic correction.
Example 2: Hydrogen Molecule

Let us form two diabatic states: wi(r‘)(r; R) corresponding to the double occupation of the
bonding orbital Is, + 1s; and the other, 1/;1.(?3)(:'; R), corresponding to the double occupation
of the bonding excited orbital 2s, + 2s;,. In this case, we will take I'3 = I'} (it does not mean

80 £, Fermi and E. Teller, Phys. Rev., 47, 399 (1947).

81 For non-pointlike dipoles, one may expect this limiting value to be less important, since the essence of the problem
is binding an electron by a positive charge. This, however, happens even for marginally small positive charges
(see the hydrogen-like atom).
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the f functions are the same). The rovibrational function will be taken as (we assume the
vibrational and rotational ground state) _fl(FZ)(R) = x1(R) Yt()](ﬂ, ¢) = x1(R), but _ 2(F4)(R) =
XQ(R)Y((]}(H, @) = x2(R). The vibrational ground state x1(R) has its maximum at R = Ry,
where the minimum of the potential energy curve E14(R) is, while x2(R) has its maximum at
R = Rys > Ry, where the potential energy curve Ez;(R) exhibits the minimum. The mixing
coefficients c¢j; and ¢j» will obviously depend on R. For R = Ry, we will have ¢;; > c¢j2.
because the ground-state bonding orbital will describe well the electronic charge distribution,
and for this R, the 2s,+2s;, orbital will have a very high energy (the size of the 2s orbitals does not
fit the distance). However, when R increases. the energy corresponding to 1s,+ 1s;, will increase,
while the energy corresponding 2s, + 2s; will decrease (because of better fitting). This will
result in a more important value of |c;2] and a bit smaller value of |¢;q| than it was for R = Rj;.
There is, therefore, a coupling of vibration with the electronic state—a vibronic coupling.
Example 3: Harpooning Effect

The harpooning effect from p. 308 represents also an example of a vibronic coupling, if the
two diabatic states: the ionic one IJII-(FI)(I'; R) and the neutral one I/fl.(,FB) (r; R) are considered
with their corresponding vibrational states.

Example 4: Benzene

Let us take a benzene molecule. Chemists have realized for a long time that all CC bonds in
this molecule are equivalent (some quantum chemical arguments for this view were presented
on p. 167). The benzene molecule does not represent a static hexagonal object. The molecule
undergoes 3M — 6 = 30 vibrations (normal modes, which will be discussed in Chapter 7).

One of these modes, say, described by the vibrational wave function ftg 2)(R), resembles a
kind of ring pulsing (“breathing”), and during these vibrations, the electronic wave function

L’f(m

- ' (r; R) describes the six equivalent CC bonds. There is also another vibrational mode cotre-

3

sponding the vibrational function flf, ) (R), that, in its certain phase, corresponds to shortening
of the two opposite CC bonds and lengthening of the four other CC bonds. During such a
motion, the electronic structure changes and will correspond to what is known as the Dewar

Structure:.

(the shortened bonds will resemble double bonds, and the others will resemble single bonds),

corresponding to the electronic wave function 1/;1.(,'*3}(_1!': R). There will be much more such
possibilities what is symbolized in Eq. (6.52) by “...".
The rovibrational functions ,f' 2) (R) and flf_.‘ +) (R) must exhibit a strong asymmetry with

respect to the equilibrium point (vibronic anharmonicity). Indeed, it is natural that the
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abovementioned Dewar structure is energetically favored for the vibrational deviations that
shorten the to-be-double CC bond and becomes unfavorable for the opposite deviations.

6.15.2 Consequences for the Quest of Superconductors

Superconductivity, discovered by a Dutch scholar Heike Kammerlingh Onnes in 1911, is cer-
tainly a fascinating phenomenon. In some substances (like originally in mercury. tin, and lead).
measurement of the electric conductivity as a function of lowering the temperature ended up by
an abrupt decrease (below a critical temperature) of the electric resistance to zero value. Such a
property would be great for operating technical devices or sending electric energy at large dis-
tances. The problem is that the critical temperature turned out to be extremely low—until 1987, it
was always lower than about 23 K. The situation changed after discovery of what is now known
as high-temperature superconductors (HTS) by J. George Bednorz and K. Alex Miiller in 1987.
Nowadays, after discovering hundreds of new HTSs, the highest critical temperature found is
equal to about 164 K. In virtually all cases, it turned out that the HTSs have a characteristic
atomic layer structure with alternating copper and oxygen atoms.

The “Magic” Cu—O Distance

No current theory explains properly the phenomena exhibited by HTSs. There are several
theorctical concepts, but their striking weakness is that they provide no indication as to the
class of promising materials that one should look for the HTS. After decades of rescarch, an
intriguing conclusion has been however found, that the closer the Cu-O distance to a “magic
value” Rey—o = 1.922 A is, the higher the corresponding critical temperature is.%? This
remarkable correlation went virtually unnoticed by the solid-state physics community for a
long time.

How could such a precise criterion work? Well, this strongly suggests that something impor-

tant happens at distance R¢,—o = 1.922 A, but for some reason, it does not when it is away
from this value.
Primum non Nocere..."
Why does a bulb emit light? It happens because the motion of the electrons in a thin wire
inside the bulb meets a resistance of chaotic vibrations of the nuclei. The kinetic energy of the
clectrons (resulting from the electric power plant operation for our money) goes partially for
making collisions with the nuclei. These collisions lead to high-energy electronic states, which
emit light when relaxing. In principle, this is why we pay our electric bill.

82 C.N.R. Rao and A.K. Ganguli, Chem. Soc. Review, 24, 1 (1995).
83 «First, do no harm™-a phrase attributed to Greek physician Hippocrates (460-370 B.C.) as a suggested minimum
standard for medical doctors.
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And what if the nuclear motion, instead of interfering, helped electrons to move? Well,
then the resistance would drop, just similarly as it does in superconductivity. Maybe there is
something in it.

In 1993, Jeremy K. Burdett postulated some possible reason for superconductivity.* His
hypothesis is related to a crossing of potential energy curves, precisely the subject of our earlier
interest. According to Burdett. the “magic Cu—0O distance” possibly corresponds to a crossing
of two close-in-energy electronic diabatic states: a diabatic state characterized by the electron
holes mainly on the copper atoms and another one with the electron holes mainly on the oxygen
atoms. Thus. these two states differ by the electronic charge distribution®, similarly as it was
in NaCl (see p. 308). However, unlike as it was for NaCl, the minima, according to Burdett, do
not differ much (if at all) in energy. Another important difference is that for NaCl, the crossing
takes place for the Na-Cl distances that are several times larger than the nearest neighbor Na-Cl
distance in the crystal of the rock salt, while for the HTSs, the Cu-O distance in crystals is close
to the corresponding crossing point. This means that atomic vibrations may cause oscillating
about the crossing point. As usually, from crossing of the diabatic curves, two adiabatic states
appear: the ground state with the double minimum and an excited state (see Fig. 6.21).

Burdett’s main point is the coupling of the ground vibrational state with the two diabatic
electronic states. It is during such vibrations that a dramatic change of the electronic charge
distribution is supposed to take place (strong vibronic coupling). The position of the vibrational
level on the energy scale is said to be critical for superconductivity. If the position is substantially
lower than the energy of the top of the barrier (Fig. 6.21b), one has to do with either of the
two states localized in a given well. This corresponds to no communication between the wells,
and we have to deal with either of the two different charge distributions (a “mixed-valence”
compound). If, on the other hand, the vibrational level has large energy (Fig. 6.21c¢), high above
the barrier top energy, one receives an averaged charge distribution. which does not change much
during vibrations. According to Burdett, the superconductivity appears, when the vibrational
level is close to the same energy as that of the top of the barrier (Fig. 6.21d), this causes a strong
coupling of the two diabatic electronic states through the vibrational state.

Relevant Vibrations

It is natural to imagine that the electron transfer between two atoms (of type A) may be accom-
plished by a mediator—a third object, say atom B. This is why research began from studies of
the effectivity of the transfer of an extra electron in the ABA™ system, like Na© F~ Na'
(ie, A = Nat, A~ = Na’, B = F~ ), when B oscillates between atoms A. Therefore, the

84 1 K. Burdett, Inorg. Chem.. 32. 3915 (1993).

85 Most probably. the key phenomena take place in the copper-oxygen layers and may be described as a reversible
reaction Cu> T + 02~ = Cu?T + 0~ or Cu?* + 0?7~ = Cu™ + 0~ (a dot means an unpaired electron).
The presence of the unpaired electrons implies some ferro- orfand antiferromagnetic properties of these materials,
which indeed have been discovered in the HTS phenomenon.



324 Chapter 6

(b)

localization 1 localization 2

mixed valence compound

d

delocalization

(metal)

superconductor

Fig. 6.21. Burdelt’s concept of superconductivity (scheme). (a) Two electronic diabatic energy curves (of comparable energies
corresponding to their equilibrium positions) cross, resulting in two adiabatic energy curves (the ground and excited states, b,c.d).
The diabatic states differ widely by the electronic charge distribution: one of them, denoted by the symbol Cu, corresponds to
the electron holes on the copper atoms, while the second one, denoted by O, has such holes on the oxygen atoms. According to
Burdett, the superconductivity has to do with the position ot the lowest vibrational level of the ground electronic state. (b) The
level is too low in energy, the vibrations are localized (either in the left- or in the right side potential energy well: this is equivalent
to a quasi-degeneracy of the sum and difference of the delocalized vibrational states). The tunneling is marginal because of the
exponential decay of the localized vibrational wave functions in the separating barrier. One has to do with an insulator in either
of two coexisting states differing by the electronic charge distribution (“exidution states”)-what is known as a mixed valence
compound. (¢) The level is too high in energy, and the vibrations are fully delocalized and proceed in the global potential energy
well. The well details do not count for much; one has to do with a state similar to averaging of the two states (“a metallic state™);
i.e., both Cu and O have some averaged oxidation states when vibration occurs. (d) A “magic” position of the vibrational state,
right at the height of the barrier. One may see this as two localized vibrational states that can wunnel easily through the barrier. The
vibrations change the oxidation states of Cu and O; i.e., cause the electron transfer.

interesting vibration should be similar to an antisymmetric stretching vibration. In such a case,
B transports an electron between the A centers. We may consider this vibration at various AA
distances. If one assumes Burdett’s concept, the following questions, related to the possible
materials involved®, appear:

*  What would we get as the electronic charge distribution if we assume optimization of the AA
distance (still keeping the constraint of linearity of ABA)? Would we get a symmetrization of

86 Which type of chemical compounds are most promising HTSs?
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the charge distribution, as in Na+% F~ Na+% (“averaged oxidation state”), or we would
rather obtain an asymmetric distribution like Na™ F~ Na” or Na F~  Na™ (“mixed valence
compound”).

* How do the above possibilities depend on the chemical character of A and B?

Where Can We Expect Superconductivity?

Well, we do not know the answer, but there are some indications. It turned out that in the vibronic
coupling”-",

+  Chemical identity of A and B is very important; the strongest vibronic coupling corresponds
to halogens and hydrogen (A, B = F, Cl, Br, 1, H).

+ The strongest vibronic coupling corresponds to A=B (with the maximum for A, B = F),
although this condition is not the most important one.

+ To exhibit the electronic instability under oscillation of B in the ABA™ radical,

— A and B must be strongly electronegative (this may explain why oxygen is present in
all the HTSs).

— A and B must form a strong covalent bond, whereas a large overlap of the corresponding
orbitals®® is more important than the equality of their energies (cf. p. 430. Chapter 8).

6.15.3 Photostability of Proteins and DNA

How does it happen that life flourishes under protection of the Sun, whereas it is well known
the star emits some deadly radiation like charged particles and UV photons? We have two main
protecting targets: one is Earth’s magnetic field, and the second is Earth’s atmosphere. Despite
the atmospheric protection. some important part of the UV radiation attains the surface of the
Earth. Substances usually are not transparent for the UV, whereas absorption of a UV photon
1s often harmful for chemical bonds, making their dissociation or/and creating other bonds.
This is desirable for producing the vitamin D3 in our body, but in many cases, it ends badly.
For example, some substances, like DNA or some important proteins, have to be completely
protected because their destruction would destroy the basis of life itself. Therefore, how do these
substances function so efficiently in the vibrant life processes? What represents an additional
target that protects them so well?

It turns out that this wonder target is the ubiquitous hydrogen bond. an important factor
determining the 3-D shape of both DNA and proteins (see p. 870). The hydrogen bond X —
H ...Y (see p. 863) has some special features that also concern its UV properties, and this

87w, Grochala, R. Konecny, and R. Hoffmann, Chent. Phys., 265, 153 (2001); W. Grochala, R. Hoffmann, New J.
Chem., 25, 108 (2001); W. Grochala and R. Hoffmann, J. Phys. Chem. A, 104, 9740 (2000); W. Grochala and R.
Hofttmann, Pol. J. Chem., 75, 1603 (2001); W. Grochala. R. Hoffmann, and P.P. Edwards, Chem. Eur. J., 9, 575
(2003): W. Grochala. J. Mater: Chem.. 19. 6949 (2009).

88 For HTSs, these orbitals are 2 p of oxygen and 3d of copper.
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holds independently which electronegative atoms XY are involved. The explanation of the
UV protection mechanism of the hydrogen bond given below comes from Sobolewski and
Domcke."”

Fig. 6.22 shows three electronic energy hypersurfaces for the hydrogen bond X — H ... Y,
visualized as sections along the proton position coordinate that describes the position of the
proton in the hydrogen bridge. The ground state Sy (light gray) represents a diabatic state corre-
sponding to the resonance structure X — H ... Y, in which two electrons are at X and two at Y.
The energy of this singlet state has a minimum for the proton position close to X. An absorption
of the UV photon makes the transition of the system to the lowest-energy singlet excited state
(LLE, dark gray) with its electronic structure denoted as (X —H ... Y)*. Most important, its
energy curve intersects another singlet excited state, which corresponds to the electron transfer
from X to ¥ (ICT. black). The resulting conical intersection of the states LLE and 1CT is

l ]CT

energy ‘

ILE

X (H-Y)*

uv| [x-mm-‘{mlff, &
&] 1 ” e ’f
xay
proton position

Fig. 6.22. The hydrogen bond is UV stable because of the mobility of the bridging proton. The image shows the electronic
energy as a function of the proton position in the hydrogen bond X — H ... ¥ (another coordinate that measures deviation of
the proton from the XY axis is also marked). The electronic ground state Sp energy curve (light gray) corresponds to the “four-
electron™ diabatic wave function corresponding to the bond pauern X — H . . Y. A UV wansition o the lowest excited singlet state
(X-H... Y)* (LLE, dark gray) is shown by a vertical arrow. The electronic energy curve for this state intersects (the conical
intersection is shown as two cones) a singlet diabatic state (1 C T, black) that corresponds to a transfer of an electron from X to ¥. The
excitation energy is sufficiently large to allow the system to attain the black curve corresponding to the structure (X — H)t .. ¥ —.
After passing the conical intersection, one deals with a vibrationally excited state, which is symbolized by [( X-mt. .. Y_-‘ hot
The proton continues its motion towards ¥ and the structure begins to be of the radical-ionic type: X*® ... (H — ¥)*. The system
meets the second conical intersection, which allows it to attain the ground state (light gray). This time. the proton moves towards
X, while its electronic energy changes to the vibrational energy of the molecule and the surrounding water. Thus, the UV photon
does not harm chemical bonds, its energy goes instead to heating the surrounding water.

89 A Sobolewski and W. Domcke, Chem. Phys. Chem., 7, 561 (2006).
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shown as a double cone. The photon energy is large enough that the system reaches the conical
intersection point and ends up on the black energy curve, which means a single electron transfer
symbolized by (X — H)* ... Y~. Since the minimum of the black curve is shifted far to the
right, after going out from the conical intersection, one has to do with a vibrational excited
state denoted as an ionic “hof” structure: [(X — Byt Y_] hot* The system slides down the
black curve changing high potential energy to the vibrational energy and kinetic energy of the
surrounding water molecules. This sliding down means that as the proton moves to the right,
the system remains all the time in the ionic state. This, however, means there is an ion-radical
structure of the type: X*® ... (H —Y)®. When sliding down, the system meets the second conical
intersection, which makes it possible to continue the motion on the ground-state curve (light
gray). At this value of the proton position, one has the “hot” structure. [X~...H — Y ]j0;. Now
the sliding down means going left (the proton comes back) and transferring the vibrational
energy to the water.

Therefore, the net result is the following: the absorption of the UV photon, after some
bouncing of the proton in the hydrogen bridge, results in heating the surrounding water,
while the hydrogen bond stays safe in its ground state.

6.15.4 Muon-Catalyzed Nuclear Fusion

Some molecules look really peculiar. They may contain a muon instead of an electron. A muon
is an unstable particle with the charge of an electron and mass equal to 207 electronic masses.””
For such a mass, assuming that nuclei are infinitely heavier than muon looks like a very bad
approximation. Therefore, the calculations need to be non-adiabatic. The first computations for
muonic molecules were performed by Kotos, Roothaan, and Sack”! in 1960. The idea behind
the project was muon-catalyzed fusion of deuterium (d) and tritium (t); the abbreviations here
pertain to the nuclei only. This fascinating problem was proposed by Andrei Sakharov. Its

essence 1s as follows.

90 The muon was discovered in 1937 by C.D. Anderson and S.H. Neddermeyer. Its lifetime is about 2.2 - 1076 s.
The muons belong to the lepton family (with the electron and t particle, the latter with a mass equal to about
3640 electronic masses). Nature created, for some unknown reasons, “more massive electrons”. When the nuclear
physicist Isidor Rabi was told about the incredible mass of the r particle, he dramatically shouted: “Who ordered
that?!”.

1 W. Kotos, C.C.J. Roothaan, R.A. Sack, Rev. Mod. Phys., 32, 205 (1960).
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If the eclectron in the
molecule dte is replaced
by a muon, immediately

Andrei Dimitriy Sakharov
(1921-1989) Russian physi-
cist and father of the Soviet
hydrogen bomb. During the
final celebration of the H bomb
project, Sakharov expressed
his hope that the bombs
would never be used. A Soviet
general answered coldly that it
was not scientists’ business to
decide such things. This was a
turning point for Sakharov, and

the dimension of the
molecule decreases by a
factor of about 200. How
is this possible?

Well, the radius of the
first Bohr orbit in the hy-
drogen atom (see, p. 202)

he began his fight against the ) 2
totalitarian system. is equal to ag = M—‘eg- After
The idea of muon-induced scientific paper, under the supervision of intt‘oducing atomic units

fusion was conceived by Tamm. In 1957, David Jackson realized

Sakharov in 1945, in his first that muons may serve as catalysts. this formulabecomes ag =

1

’_‘.1

account that the reduced

and when we take into

mass 1 ~ m (m stands for the electron mass), we get ag =~ 1. This approximation works
for the electron because in reality, u = 0.9995m. If, in the hydrogen atom, we have a muon
instead of an electron, then v would equal about 250 m. This, however, means that such a
“muon Bohr radius” would be about 250 times smaller. Nuclear forces begin to operate at such
a small internuclear separation (strong interactions; see Fig. 6.23a), and arc able to overcome
the Coulombic barrier and stick the nuclei together by nuclear fusion. The muon, however, is
released, and may serve as a catalyst in the next nuclear reaction.

Deuteron and tritium bound together represent a helium nucleus. One muon may participate
in about 200300 such muon-catalyzed fusion processes.”” Everybody knows how much effort
and moncy has been spent for decades (for the moment in vain) to ignite the nuclear synthesis
d + t — He. Muon-catalyzed fusion might be an alternative solution. If the muon project were
successful, humanity would have access to a practically unlimited source of energy. Unfortu-
nately, theoretical investigations suggest that the experimental yield already achieved is about
the maximum theoretical value.””

92 The commercial viability of this process will not be an option unless we can demonstrate 900 fusion events for
each muon. About 10 g of deuterium and 15 g of tritium fusion would then be sufficient to supply the average
person with electricity for life.

93 This has been the subject of a joint Polish-American project. More about this may be found in K. Szalewicz, S.
Alexander, P. Froelich, S. Haywood, B. Jeziorski, W. Kotos, H.J. Monkhorst, A. Scrinzi, C. Stodden, A. Velenik,
and X. Zhao, in Muon Catalvzed Fusion. eds. S.E. Jones. ]. Rafelski, H.J. Monkhorst, AIP Conference Proceedings,
181, 254 (1989).
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Fig. 6.23. (a) The interaction energy potential of « and ¢ as a function of the interparticle distance (R), taking the nuclear
forces into account (an outline). At large R, of the order of nanometers, we have Coulombic repulsion, at distances of the order
of femtometers the internuclear attractive forces (called the strong interuction) are switched on and overcome the Coulombic
repulsion. At a distance of a fraction of a femtometer, again we have a repulsion. (b) “Russian dells™ (outline): the analogs of Hy
and H;.

6.15.5 “Russian Dolls,” or a Molecule Within Molecule

. . . [®
Scrinzi and Szalewicz”?*

particles: proton (p). deuterium (d). tritium (t), muon (1£). and two clectrons (e) interacting by
Coulombic forces (i.e., no nuclear forces are assumed). It is not easy to predict the structure of
the system. It turned out that the resulting structure is akind of “Russian doll”” (see Fig. 6.23b):
the muon has acted according to its mass (see above) and created tdy with a dimension of about
0.02 A. This system may be viewed as a partly split nucleus of charge +1 or, alternatively,
as a mini-model of the hydrogen molecular ion (scaled at 1:200). The “nucleus” serves as a
partner to the proton, and both create a system similar to the hydrogen molecule, in which the
two electrons play their usual binding role and the internuclear distance is about 0.7 ATt turns
out that the nonzero dimension of the “nucleus” makes a difference, and the energies computed

carried out non-adiabatic calculations (p. 265) for a system of six

94 A. Scrinzi and K. Szalewicz, Phys. Rev. A, 39, 4983 (1989).
95 (((woman @ woman)}@ woman)@ )
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with and without an approximation of the pointlike nucleus differ. The difference is tiny (about
0.20 meV), but it is there.

It is quite remarkable that such small effects are responsible for the fate of the total system.
The authors report that the relaxation of the “nucleus” dtye (from the excited state to the ground
state%) causes the ionization of the system: one of the electrons flies off. Such an effect, however,
may excite those who study this phenomenon. How is it possible? The “nucleus” is terribly small
when seen by an electron orbiting far away. How could the electron detect that the nucleus has
changed its state and that it has no future in the molecule? Here, however, our intuition fails. For
the electron, the most frequently visited regions of the molecule are nuclei. We will see this in
Chapter 8 (p. 444), but even the 1s state of the hydrogen atom (the maximum of the orbital is at
the nucleus; see p. 201) suggests the same. Therefore, no wonder the electron could recognize
that something has abruptly changed on one of the nuclei and (being already excited) it received
much more freedom—so much, in fact, that it could leave the molecule.

We may pose an interesting question: Does the “Russian doll” represent the global minimum
of the particle system? We may imagine that the proton changes its position with the deuterium
or tritium; i.e., new isomers (isotopomers”’) appear. The authors did not study this question”®,
but they investigated substituting the proton with deuterium and tritium (and obtained similar
results).

Scrinzi and Szalewicz also performed some calculations for an analog of H;r: proton, deu-
terium, tritium, muon, and electron. Here, the “Russian doll” looks wonderful (Fig. 6.23c); itis
a four-level object:

e The molecular ion (the analog of Hj) 1s composed of three objects: the proton, the “split
nucleus” of charge 41 and the electron.

e The “split nucleus™ is also composed of three objects: d,t,pu (a mini-model of HEL ).

e The tritium is composed of three nucleons: the proton and the two neutrons.

» Each of the nucleons is composed of three quarks (called the valence quarks).

96 A. Scrinzi and K. Szalewicz, Phyvs. Rev. A., 39, 2855 (1989). The di;c ion is created in the rovibrational state
J =1,v = 1, and then the system spontaneously goes to the lower energy 01 or 00 state. The energy excess
causes one electron to leave the system (ionization). This is an analog of the Auger effect in spectroscopy.

97 The situation is quite typical, although we very rarely think this way. Some people say that they observe nvo different
systems. whereas others say that they see fivo states of the same svstem. This begins with the hydrogen atom-it
looks different in its 1s and 3 p- states. We can easily distinguish two ditferent conformations of cyclohexane, two
isomers of butane, and some chemists would say these are different substances. Going much further, Ny and CO
represent two different molecules, or is one of them nothing but an excited state of the other? However strange it
may sound for a chemist, N> represents an excited state of CO because we may imagine a nuclear reaction of the
displacement of a proton from one nitrogen to the other (and the energy curve per nucleon as a function of the
atomic mass is convex). Such a point of view is better for viewing each object as a “new animal™: it enables us to
see and use some relations among these animals.

o They focused their attention on tdz..
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Summar:y

+ In the adiabatic and the Born-Oppenheimer approximations, the total wave function is taken as a product W =
Y. (r; R) fi.(R) of the function fi(R), which describes the motion of the nuclei (vibrations and rotations) and
the function ;. (r; R) that pertains to the motion of electrons (and depends parametrically on the configuration
of the nuclei; here, we give the formulas for a diatomic molecule). This approximation relies on the fact that the
nuclei are thousands of times heavier than the electrons.

=  The function ¥ (r; R) represents an eigenfunction of the electronic Hamiltonian ﬁg(R); i.e., the Hamiltonian

H, in which the kinetic energy operator for the nuclei is assumed to be zero (the clamped nuclei Hamiltonian)
» The eigenvalue of the clamped nuclei Hamiltonian depends on positions of the nuclei and in the Born-
Oppenheimer approximation, it is mass-independent. This energy as a function of the configuration of the
nuclei represents the potential energy for the motion of the nuclei (Potential Energy Surface, or PES).
«  The function fi(R) is a product of a spherical harmonic”’ ¥ }J that describes the rotations of the molecule (J
and M stand for the corresponding quantum numbers) and a function that describes the vibrations of the nuclei.
»  Thediagram of the energy levels shown in Fig. 6.4 represents the basis of molecular spectroscopy. The diagram
may be summarized in the following way:

— Theenergy levels form some series separated by energy gaps, withno discrete levels. Each series corresponds
to a single electronic state k, and the individual levels pertain to various vibrational and rotational states of
the molecule in electronic state k.
Within the series for a given electronic state. there are groups of energy levels. each group characterized
by a distinct vibrational quantum number (v = 0, 1, 2, ... ), and within the group, the states of higher and
higher energies correspond to the increasing rotational quantum number J.

— The energy levels lulfill some general relations:

% Increasing k corresponds to an electronic excitation of the molecule (UV-VIS, ultraviolet and visible
spectrumy}.

% Increasing v pertains to a vibrational excitation of the molecule, and requires the energy to be smaller
by one or two orders of magnitude than an electronic excitation (IR. infrared spectrum).

x* Increasing J is associated with energy smaller by one or two orders of magnitude than a vibrational
excitation (microwaves).

=  Above the dissociation limit, one is dealing with a continuum of states of the dissociation products with kinetic
energy. In such a continuum, one may have also the resonance states, which may have wave functions that
resemble those of stationary states but differ from them by having finite lifetimes.

=  The electronic wave functions . (r; R) correspond to the energy eigenstates EE(R), which are functions of
R. The energy curves'™ EE(R) for different electronic states k may cross each other, unless the molecule is

diatomic and the two electronic states have the same z;},(mlmetry.“11 In such a case, we have what 1s known as
an avoided crossing (see Figs. 6.15 and 6.16).

«  The adiabatic states represent the eigenfunctions of ft?()(R]. If electrons have enough time to follow the nuclei,
we may apply the adiabatic function (which may change its chemical character when varying R). The diabatic
states are not the eigenfunctions of 1;’0 (R) and preserve their chemical character when changing R. If electrons
are too slow to follow the nuclei, changing R may result in keeping the same chemical character of the solution
(diabatic state). In the adiabatic and diabatic approaches. the motion of the nuclei is described using a single
PES.

=  The non-adiabatic approach requires using several or many PESs when describing motion of the nuclei. The total
wave function is a linear combination of the rovibronic functions with different and R-dependent amplitudes.

99 This refers to the ei genfunction for the rigid rotator.
100 These curves are expressed as functions of R.
101 That js, they transform according to the same irreducible representation.
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For polyatomic molecules, the energy hypersurfaces h'g (R) can cross. The most important is the conical inter-
section (Fig. 6.19) of the two (I and II) diabatic hyperswrfaces; i.e., those that (each individually) preserve a
given pattern of chemical bonds. This intersection results in two adiabatic hypersurfaces (“lower PES and upper
PES”). Each of the adiabatic hypersurfaces consists of two parts: one belonging to [ and the second to II. Using
a suitable coordinate system in the configurational space, we obtain the adiabatic hypersurface splitting (the
ditference of E_ and E) when changing two coordinates (£] and &) only (the branching plane). The splitting
begins by a linear dependence on &) and &;. which gives a sort of cone (hence the name conical intersection).
The other coordinates (the seam space) alone are unable to cause the splitting, although they may influence the
opening angle of the cone.

Conical intersection plays a prominent role in the photochemical reactions because the excited molecule slides
down the upper adiabatic hypersurface to the funnel (just the conical intersection point) and then, with a yield
close to 100%, lands on the lower adiabatic hypersurface (assuming that there is a mechanism for dissipation
of the excess energy).

The vibronic effects are the basis of many important phenomena.

Main Concepts, New Terms

adiabatic approach (p. 302)
adiabatic approximation (p. 268)
asymmetric top (p. 293)

avoided crossing (p. 306)

Berry phase (p. 314)

BFCS (p. 289)

Born-Oppenheimer approximation (p. 272)

branching plane (p. 312)

branching space (p. 311)

clamped nuclei Hamiltonian (p. 264)
conical intersection (p. 312)
continuum states (p. 297)

Coriolis energy (p. 293)

diabatic approach (p. 303)

diagonal correction for the motion of the nuclei (p. 268)

dipole-bound electron (p. 320)
Eckart conditions (p. 293)
electronic energy (p. 266)
electronic Hamiltonian (p. 264)

electronic-vibrational-rotational spectroscopy (p. 278)

Franck-Condon rule (p. 316)
funnel effect (p. 316)
harpooning effect (p. 308)
HTS (p. 322)

infrared spectrum (p. 280)
microwave spectrum (p. 280)
molecular structure (p. 276)
moment of inertia (p. 295)
muon-catalyzed fusion (p. 327)

non-adiabatic approach (p. 302)
non-bound metastable states (p. 297)
non-bound states (p. 297)
non-crossing rule (p. 310)
non-radiative transitions (p. 317)
nuclear fusion (p. 327)

PES (p. 331)

photochemical reaction (p. 317)
photostability (p. 325)

potential energy curve (p. 272)
potential energy (hyper)surface (p. 276)
quasi-harmonic approximation (p. 287)
RMCS (p. 293)

rotational energy (p. 279)

rotational structure (p. 280)
roto-translational coupling (p. 291)
seam space (p. 311)

SFCS (p. 261)

spherical top (p. 294)

superconductors (p. 322

symmetric op (p. 293)

UV-VIS spectrum (p. 280)

vibrational energy (p. 281)

vibrational function (p. 279)
vibrational structure (p. 279)

vibronic coupling (p. 318)
vibro-translational coupling (p. 291)
vibro-rotational coupling (p. 291)
wave function “measurement” (p. 301)
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From the Research Front

For the hydrogen molecule, one may currently get a very high accuracy in predicting rovibrational levels. For example,
exact analytic formulas have been derived'"” that allow one to compute the Born-Oppenheimer potential with the
uncertainty smaller than 10~ em~! and add the correction for the nonzero size of each nucleus (the latter correction
shifts the rovibrational energy levels by less than 10~ em~! in all cases). The approach presented on p. 275 is
able to produce the adiabatic diagonal correction, and the non-adiabatic corrections for all rovibrational states of the
ground electronic state with the accuracy better than 10~ ecm™!. One is able to test the accuracy of not only the
theory given in this chapter, but also of its most sophisticated extensions, including quantum electrodynamics (QED).
One may say that virtually for the first time, QED can be confronted with the most accurate experiments beyond the
traditional territory of the free electron and simple atoms (hydrogen, helium, lithium); i.e., for systems with more
than one nucleus. For the hydrogen molecule. one starts with an accurate solution to the Schridinger equalilnnm‘z
and then, circumventing the Dirac equation, one includes all the relativistic Breit-Pauli terms [all terms of the order

2
of (%) . the terms of the order of % vanish, where 137.0356991 a.u.] and later, the complete QED corrections of the

3 4
order of (%) and the leading terms of (‘l) . Just to show the accuracy achieved for the hydrogen molecule, for the

J = 0 — 1 rotational excitation, the theory gives”” 118.486812(9) cm ™!, while the most accurate experiment to
date!"3 gives 118.48684(10) cm~ L. Some theories trying to explain the presence of black matter need the nuclear
forces operating at larger distances than they are traditionally believed to do. If these theories were true, there would
be no such agreement between the theory and experiment, and we would see a larger difference.

Ad Futurum

The computational effort needed to calculate the PES for an M atomic molecule is proportional to 103M —6. This
strong dependence suggests that, for the next 20 years, it would be unrealistic to expect high-quality PES computations
for M = 10. However, experimental chemistry olfers high-precision results for molecules with hundreds of atoms.
It seems inevitable that it will be possible to freeze the coordinates of many atoms. There are good reasons for such
an approach: indeed, most atoms play the role of spectators in chemical processes. It may be that limiting ourselves
to, say, 10 atoms will make the computation of rovibrational spectra feasible.

Additional Literature

I. Hinze, A. Alijah, and L. Wolniewicz. “Understanding the adiabatic approximation: the accurate data of Hy
transferred to H3", Fol. J. Chem., 72, 1293 (1998).

The paper reports the derivation of the equation of motion for a polyatomic molecule. As the origin of the BFCS,
unlike in this chapter, the center of mass was chosen S

W. Kolos, “Adiabatic approximation and its accuracy,” Advan. Quantum Chem., 5, 99 (1970).

102 g Pachucki, Phys. Rev. A, 82, 032509 (2010).

103 The center of mass rests at the origin. The solution of the Schrédinger equation is achieved numerically; i.e., the
non-adiabatic treatment is applied with very high and controlled accuracy.

104 5 Komasa, K. Piszczatowski, G. Lach, M. Przybytek, B. Jeziorski, and K. Pachucki, J. Chem. Theor. Comput.,
7, 3105 (2011).

105 D.E. Jennings, S.L. Bragg, and J.W. Brault, Astrophys. J., 282, 185 (1984). The uncertainty in parentheses is
given in the units of the last digit reported.

106 We have chosen the center of the ab bond.
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F. Bernardi, M. Olivucci, and M. A. Robb, “Potential energy surface crossings in organic photochemistry,” Chem.
Soc. Rev. 321-328 (1996).

W. Domcke, D. R.Yarkony, and H. Képpel (eds.), “Conical intersections: Electronic structure, dynamics, and spec-
troscopy,” Advanced Series in Physical Chemistry, Vol. 15, World Scientific Publishing, Singapore (2004).

Questions

1.

The non-adiabatic theory for a diatomic (r denotes the electronic coordinates, R stands for the vector connecting
nucleus b with nucleus a, R = |R|, N means the number of electrons, m is the electron mass, V represents the
Coulombic interaction of all particles, p is the reduced mass of the two nuclei of masses M, and Mp).

a.

b.

the total wave function can be represented as W(r, R) = > ; ¥4 (r; R) fi(R), where the functions ¢ form
a complete set in the Hilbert space for electrons (at a given R), and f}, are the coefficients depending on R
in the expression W (r, R) = Y ; ¥z (r; R) fi (R) the functions f; (R} describe rotations and vibrations of
the molecule

as functions ¥, (r; R) one may assume the eigenfunctions of the electronic Hamiltonian

may provide only some approximation of the solution to the Schrédinger equation

Adiabatic approximation (notation as in question 1).

is also known as the Born-Oppenheimer approximation

the electronic Hamiltonian can be obtained from the total Hamiltonian by neglecting the kinetic energy
operator for the nuclei

in the adiabatic approximation the total wave function represents a product ¥ (r; R) f;. (R), where ¥ (r; R)
stands for the eigenfunction of the clamped nuclei Hamiltonian for the configuration of the nuclei given
by R, while f;(R) denotes the wave function for the motion of the nuclei

E ,9 as a function of R represents the eigenvalue of the clamped nuclei Hamiltonian that corresponds to the
wave function v (r; R).

A diatomic in the adiabatic approximation, the origin of the coordinate system is in the geometric center of the
molecule (at R/2). The nuclei vibrate in the potential:

a.
b.
c.

d.

EQR) + J(J + 15y
k 2uR

~ h2
(vl v} + @7 + 1152
EQR) + H, + J(J + 1)L
(B + Hyy + J(J + )—MR

(rl ) + 9 + D5

The potential energy curves for the motion of the nuclei for electronic states computed at the Born-Oppenheimer
approximation for diatomics

a.

d.

may not intersect

have to intersect at an internuclear distance

cannot intersect, if the corresponding eigenfunctions belong to the same irreducible representation of the
symmetry group of the Hamiltonian

may intersect, if the corresponding wave functions are of different symmetry.

The potential energy for the motion of the nuclei in the Born-Oppenheimer approximation:

S

po o

contains the eigenvalue of the clamped nuclei Hamiltonian

as a function of the configuration of the nuclei may exhibit many minima
contains the electronic energy

does not change after rotational excitations
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6. Due to the rotational excitation J — (J + 1) of a diatomic of bond length R

)

oo

one has to add to the potential energy a term proportional to (2J + HR?
the potential energy for vibrations changes

the molecule may dissociate due to the centrifugal force

the momentum of the molecule increases

7. The adiabatic approximation

takes into account the finite mass of the nuclei

means the total wave function being a product of the electronic wave function and a wave function that
describes the motion of the nuclei

as a consequence leads to the concept of a spatial shape of a molecule

is better satisfied by a molecule with muons instead of electrons.

8. Basics of spectroscopy within the Born-Oppenheimer approximation.

)

B o=

the electronic structure changes after absorbing microwaves

to excite vibrational levels (preserving the electronic state) one needs the IR radiation
a red sweater witnesses about a dye that absorbs red light

microwaves can excite rotations of polar molecules.

9. At the conical intersection, the following directions in the space of the nuclear configurations make splitting of
Eyand E_

a.
b.

C.
d.

V(E| — E>) and V(V12)
V(EFEL) and v (Vi)

E -E
V(EZE) and v(v1)
any direction in the branching space.

10. At the conical intersection the opening angle of the cone

o

equals zero

b. in general differs along the directions of V(E; — E5) and V(V]2)

c. depends on the point of the seam space

d. inthe Born-Oppenheimer approximation is the same for different isotopomers.
Answers

la,b.c, 2b,c.d, 3c.d, 4a,c.d, 5a,b,c 6b,c, 7b.c, 8b.d, 9a,c,d 10b,c.d



